3 resultados para T-Kernel
em Memorial University Research Repository
Resumo:
My thesis examines fine-scale habitat use and movement patterns of age 1 Greenland cod (Gadus macrocephalus ogac) tracked using acoustic telemetry. Recent advances in tracking technologies such as GPS and acoustic telemetry have led to increasingly large and detailed datasets that present new opportunities for researchers to address fine-scale ecological questions regarding animal movement and spatial distribution. There is a growing demand for home range models that will not only work with massive quantities of autocorrelated data, but that can also exploit the added detail inherent in these high-resolution datasets. Most published home range studies use radio-telemetry or satellite data from terrestrial mammals or avian species, and most studies that evaluate the relative performance of home range models use simulated data. In Chapter 2, I used actual field-collected data from age-1 Greenland cod tracked with acoustic telemetry to evaluate the accuracy and precision of six home range models: minimum convex polygons, kernel densities with plug-in bandwidth selection and the reference bandwidth, adaptive local convex hulls, Brownian bridges, and dynamic Brownian bridges. I then applied the most appropriate model to two years (2010-2012) of tracking data collected from 82 tagged Greenland cod tracked in Newman Sound, Newfoundland, Canada, to determine diel and seasonal differences in habitat use and movement patterns (Chapter 3). Little is known of juvenile cod ecology, so resolving these relationships will provide valuable insight into activity patterns, habitat use, and predator-prey dynamics, while filling a knowledge gap regarding the use of space by age 1 Greenland cod in a coastal nursery habitat. By doing so, my thesis demonstrates an appropriate technique for modelling the spatial use of fish from acoustic telemetry data that can be applied to high-resolution, high-frequency tracking datasets collected from mobile organisms in any environment.
Resumo:
This thesis stems from the project with real-time environmental monitoring company EMSAT Corporation. They were looking for methods to automatically ag spikes and other anomalies in their environmental sensor data streams. The problem presents several challenges: near real-time anomaly detection, absence of labeled data and time-changing data streams. Here, we address this problem using both a statistical parametric approach as well as a non-parametric approach like Kernel Density Estimation (KDE). The main contribution of this thesis is extending the KDE to work more effectively for evolving data streams, particularly in presence of concept drift. To address that, we have developed a framework for integrating Adaptive Windowing (ADWIN) change detection algorithm with KDE. We have tested this approach on several real world data sets and received positive feedback from our industry collaborator. Some results appearing in this thesis have been presented at ECML PKDD 2015 Doctoral Consortium.
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.