1 resultado para Sphere packings
em Memorial University Research Repository
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (6)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de la Universidad Católica Argentina (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (79)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (4)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (40)
- Cambridge University Engineering Department Publications Database (32)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (42)
- Indian Institute of Science - Bangalore - Índia (157)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (99)
- Queensland University of Technology - ePrints Archive (170)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (9)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (5)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (16)
- University of Michigan (22)
- University of Queensland eSpace - Australia (4)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
In this thesis, we define the spectrum problem for packings (coverings) of G to be the problem of finding all graphs H such that a maximum G-packing (minimum G- covering) of the complete graph with the leave (excess) graph H exists. The set of achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is called the spectrum of leave (excess) graphs for G. Then, we consider this problem for trees with up to five edges. We will prove that for any tree T with up to five edges, if the leave graph in a maximum T-packing of the complete graph Kn has i edges, then the spectrum of leave graphs for T is the set of all simple graphs with i edges. In fact, for these T and i and H any simple graph with i edges, we will construct a maximum T-packing of Kn with the leave graph H. We will also show that for any tree T with k ≤ 5 edges, if the excess graph in a minimum T-covering of the complete graph Kn has i edges, then the spectrum of excess graphs for T is the set of all simple graphs and multigraphs with i edges, except for the case that T is a 5-star, for which the graph formed by four multiple edges is not achievable when n = 12.