1 resultado para Social recognition memory
em Memorial University Research Repository
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (27)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (131)
- Biblioteca Digital de la Universidad del Valle - Colombia (1)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (10)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (11)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (21)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (11)
- Portal de Revistas Científicas Complutenses - Espanha (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (6)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (19)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scielo Saúde Pública - SP (8)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (19)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universidade Metodista de São Paulo (9)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (40)
- Université de Montréal (3)
- Université de Montréal, Canada (29)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (2)
- University of Queensland eSpace - Australia (208)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.