2 resultados para Simulation and prediction

em Memorial University Research Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, research for tsunami remote sensing using the Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDMs) is presented. Firstly, a process for simulating GNSS-R DDMs of a tsunami-dominated sea sur- face is described. In this method, the bistatic scattering Zavorotny-Voronovich (Z-V) model, the sea surface mean square slope model of Cox and Munk, and the tsunami- induced wind perturbation model are employed. The feasibility of the Cox and Munk model under a tsunami scenario is examined by comparing the Cox and Munk model- based scattering coefficient with the Jason-1 measurement. A good consistency be- tween these two results is obtained with a correlation coefficient of 0.93. After con- firming the applicability of the Cox and Munk model for a tsunami-dominated sea, this work provides the simulations of the scattering coefficient distribution and the corresponding DDMs of a fixed region of interest before and during the tsunami. Fur- thermore, by subtracting the simulation results that are free of tsunami from those with presence of tsunami, the tsunami-induced variations in scattering coefficients and DDMs can be clearly observed. Secondly, a scheme to detect tsunamis and estimate tsunami parameters from such tsunami-dominant sea surface DDMs is developed. As a first step, a procedure to de- termine tsunami-induced sea surface height anomalies (SSHAs) from DDMs is demon- strated and a tsunami detection precept is proposed. Subsequently, the tsunami parameters (wave amplitude, direction and speed of propagation, wavelength, and the tsunami source location) are estimated based upon the detected tsunami-induced SSHAs. In application, the sea surface scattering coefficients are unambiguously re- trieved by employing the spatial integration approach (SIA) and the dual-antenna technique. Next, the effective wind speed distribution can be restored from the scat- tering coefficients. Assuming all DDMs are of a tsunami-dominated sea surface, the tsunami-induced SSHAs can be derived with the knowledge of background wind speed distribution. In addition, the SSHA distribution resulting from the tsunami-free DDM (which is supposed to be zero) is considered as an error map introduced during the overall retrieving stage and is utilized to mitigate such errors from influencing sub- sequent SSHA results. In particular, a tsunami detection procedure is conducted to judge the SSHAs to be truly tsunami-induced or not through a fitting process, which makes it possible to decrease the false alarm. After this step, tsunami parameter estimation is proceeded based upon the fitted results in the former tsunami detec- tion procedure. Moreover, an additional method is proposed for estimating tsunami propagation velocity and is believed to be more desirable in real-world scenarios. The above-mentioned tsunami-dominated sea surface DDM simulation, tsunami detection precept and parameter estimation have been tested with simulated data based on the 2004 Sumatra-Andaman tsunami event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of critical thinking and communication skills is an essential part of Baccalaureate and Practical Nursing education. Scenario-based simulation, a form of experiential learning, directly engages students in the learning process. This teaching learning method has been shown to increase students’ understanding of the influence of their personal beliefs and values when working with clients and to improve therapeutic communication and critical thinking skills. Students in both the BN (Collaborative) and PN Programs at the Centre for Nursing Studies demonstrate a strong theoretical understanding of the impact of income and social status on population health but often experience difficulty applying this knowledge to the clinical situations involving clients and families. The purpose of the project was to develop a scenario-based simulation activity to provide nursing students with first-hand experiences of the impact of income and social status on health service accessibility. A literature review and stakeholder consultations were conducted to inform the project. The findings of these initiatives and Kolb’s Experiential Learning Theory were used to guide all aspects of the project. This report is an account of how the income and social status simulation and its accompanying materials were developed. This project provided an excellent learning opportunity that demonstrated the use of advanced nursing competencies.