2 resultados para Radar Reflectivity
em Memorial University Research Repository
Resumo:
In this thesis, the first-order radar cross section (RCS) of an iceberg is derived and simulated. This analysis takes place in the context of a monostatic high frequency surface wave radar with a vertical dipole source that is driven by a pulsed waveform. The starting point of this work is a general electric field equation derived previ- ously for an arbitrarily shaped iceberg region surrounded by an ocean surface. The condition of monostatic backscatter is applied to this general field equation and the resulting expression is inverse Fourier transformed. In the time domain the excitation current of the transmit antenna is specified to be a pulsed sinusoid signal. The result- ing electric field equation is simplified and its physical significance is assessed. The field equation is then further simplified by restricting the iceberg's size to fit within a single radar patch width. The power received by the radar is calculated using this electric field equation. Comparing the received power with the radar range equation gives a general expression for the iceberg RCS. The iceberg RCS equation is found to depend on several parameters including the geometry of the iceberg, the radar frequency, and the electrical parameters of both the iceberg and the ocean surface. The RCS is rewritten in a form suitable for simulations and simulations are carried out for rectangularly shaped icebergs. Simulation results are discussed and are found to be consistent with existing research.
Resumo:
The purpose of this paper is to survey and assess the state-of-the-art in automatic target recognition for synthetic aperture radar imagery (SAR-ATR). The aim is not to develop an exhaustive survey of the voluminous literature, but rather to capture in one place the various approaches for implementing the SAR-ATR system. This paper is meant to be as self-contained as possible, and it approaches the SAR-ATR problem from a holistic end-to-end perspective. A brief overview for the breadth of the SAR-ATR challenges is conducted. This is couched in terms of a single-channel SAR, and it is extendable to multi-channel SAR systems. Stages pertinent to the basic SAR-ATR system structure are defined, and the motivations of the requirements and constraints on the system constituents are addressed. For each stage in the SAR-ATR processing chain, a taxonomization methodology for surveying the numerous methods published in the open literature is proposed. Carefully selected works from the literature are presented under the taxa proposed. Novel comparisons, discussions, and comments are pinpointed throughout this paper. A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed. The scheme is applied to the works surveyed in this paper. Finally, a discussion is presented in which various interrelated issues, such as standard operating conditions, extended operating conditions, and target-model design, are addressed. This paper is a contribution toward fulfilling an objective of end-to-end SAR-ATR system design.