2 resultados para RU(BPY)(3)(3 )-BASED CHEMILUMINESCENCE DETECTION

em Memorial University Research Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis reports on a novel method to build a 3-D model of the above-water portion of icebergs using surface imaging. The goal is to work towards the automation of iceberg surveys, allowing an Autonomous Surface Craft (ASC) to acquire shape and size information. After collecting data and images, the core software algorithm is made up of three parts: occluding contour finding, volume intersection, and parameter estimation. A software module is designed that could be used on the ASC to perform automatic and fast processing of above-water surface image data to determine iceberg shape and size measurement and determination. The resolution of the method is calculated using data from the iceberg database of the Program of Energy Research and Development (PERD). The method was investigated using data from field trials conducted through the summer of 2014 by surveying 8 icebergs during 3 expeditions. The results were analyzed to determine iceberg characteristics. Limitations of this method are addressed including its accuracy. Surface imaging system and LIDAR system are developed to profile the above-water iceberg in 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.