1 resultado para Pregnancy -- Signs and diagnosis.
em Memorial University Research Repository
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (20)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (48)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (135)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (92)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- Dalarna University College Electronic Archive (6)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- Glasgow Theses Service (1)
- Harvard University (3)
- Institute of Public Health in Ireland, Ireland (6)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (14)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (146)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (96)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade do Minho (7)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (100)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Michigan (38)
- University of Queensland eSpace - Australia (23)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.