1 resultado para Online social network (OSN)
em Memorial University Research Repository
Filtro por publicador
- Repository Napier (2)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (25)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (23)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (21)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (28)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (9)
- Duke University (2)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Escola Superior de Educação de Paula Frassinetti (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (19)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (15)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (7)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (5)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (14)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (200)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (6)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo España (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (14)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (31)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (3)
- University of Michigan (1)
- University of Queensland eSpace - Australia (7)
- University of Southampton, United Kingdom (17)
- University of Washington (6)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.