2 resultados para Non-covalent interactions

em Memorial University Research Repository


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiosalt species are unstable, partially oxidized sulfur oxyanions formed in sulfur-rich environments but also during the flotation and milling of sulfidic minerals especially those containing pyrite (FeS₂) and pyrrhotite (Fe₍₁₋ₓ₎S, x = 0 to 0.2). Detecting and quantifying the major thiosalt species such as sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), trithionate (S₃O₆²⁻), tetrathionate (S₄O₆²⁻) and higher polythionates (SₓO₆²⁻, where 3 ≤ x ≤ 10) in the milling process and in the treated tailings is important to understand how thiosalts are generated and provides insight into potential treatment. As these species are unstable, a fast and reliable analytical technique is required for their analysis. Three capillary zone electrophoresis (CZE) methods using indirect UV-vis detection were developed for the simultaneous separation and determination of five thiosalt anions: SO₄²⁻, S₂O₃²⁻, S₃O₆²⁻, S₄O₆²⁻ and S₅O₆²⁻. Both univariate and multivariate experimental design approaches were used to optimize the most critical factors (background electrolyte (BGE) and instrumental conditions) to achieve fast separation and quantitative analysis of the thiosalt species. The mathematically predicted responses for the multivariate experiments were in good agreement with the experimental results. Limits of detection (LODs) (S/N = 3) for the methods were between 0.09 and 0.34 μg/mL without a sample stacking technique and nearly four-fold increase in LODs with the application of field-amplified sample stacking. As direct analysis of thiosalts by mass spectrometry (MS) is limited by their low m/z values and detection in negative mode electrospray ionization (ESI), which is typically less sensitive than positive ESI, imidazolium-based (IP-L-Imid and IP-T-Imid) and phosphonium-based (IP-T-Phos) tricationic ion-pairing reagents were used to form stable high mass ions non-covalent +1 ion-pairs with these species for ESI-MS analysis and the association constants (Kassoc) determined for these ion-pairs. Kassoc values were between 6.85 × 10² M⁻¹ and 3.56 × 10⁵ M⁻¹ with the linear IP-L-Imid; 1.89 ×10³ M⁻¹ and 1.05 × 10⁵ M⁻¹ with the trigonal IP-T-Imid ion-pairs; and 7.51×10² M⁻¹ and 4.91× 10⁴ M⁻¹ with the trigonal IP-T-Phos ion-pairs. The highest formation constants were obtained for S₃O₆²⁻ and the imidazolium-based linear ion-pairing reagent (IP-L-Imid), whereas the lowest were for IP-L-Imid: SO₄²⁻ ion-pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent invasion of the European green crab (Carcinus maenas) populations in Placentia Bay, Newfoundland and Labrador (NL) raises great concern about potential impacts on local fisheries and native biodiversity. Green crab are highly adaptable and in both native and invaded areas, green crab are well established predators that can outcompete other similarly sized decapods. The main objectives of this thesis were to: 1) identify the native species that green crab compete with for resources; 2) determine the depths and substrate types in which these interactions likely occur; 3) assess the indirect effects of green crab on native crustaceans and their changes in behavior; 4) assess the impacts of green crab on benthic community structure; 5) compare the NL population with other Atlantic Canadian populations in terms of competitive abilities; and 6) compare morphological features of the NL population with other Atlantic Canadian populations. I found that green crab overlap in space and diet with both rock crab (Cancer irroratus) and American lobster (Homarus americanus), potentially leading to a shift in habitat. Laboratory studies on naïve juvenile lobster also suggested shifts in behavior related to green crab, in that lobster decreased foraging activity and increased shelter use in the presence of green crab. Benthic community analyses showed fewer species in mud, sand, and eelgrass sites heavily populated by green crab compared to sites without green crab, although results depended on the taxa involved and I could not eliminate environmental differences through a short term caging study. Foraging ability of green crab varied in intraspecific competition experiments, with populations from NL and Prince Edward Island dominating longer-established populations from Nova Scotia and New Brunswick. Additional studies excluded claw size as a factor driving these results and behavioral differences likely reflected differences in invasion time and population genetics. Overall, green crab in Placentia Bay appear to be altering community structure of benthic invertebrates through predation and they also appear to indirectly impact native crustaceans through competition.