2 resultados para Natural gas reserves.

em Memorial University Research Repository


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formation of hydrates is one of the major flow assurance problems faced by the oil and gas industry. Hydrates tend to form in natural gas pipelines with the presence of water and favorable temperature and pressure conditions, generally low temperatures and corresponding high pressures. Agglomeration of hydrates can result in blockage of flowlines and equipment, which can be time consuming to remove in subsea equipment and cause safety issues. Natural gas pipelines are more susceptible to burst and explosion owing to hydrate plugging. Therefore, a rigorous risk-assessment related to hydrate formation is required, which assists in preventing hydrate blockage and ensuring equipment integrity. This thesis presents a novel methodology to assess the probability of hydrate formation and presents a risk-based approach to determine the parameters of winterization schemes to avoid hydrate formation in natural gas pipelines operating in Arctic conditions. It also presents a lab-scale multiphase flow loop to study the effects of geometric and hydrodynamic parameters on hydrate formation and discusses the effects of geometric and hydrodynamic parameters on multiphase development length of a pipeline. Therefore, this study substantially contributes to the assessment of probability of hydrate formation and the decision making process of winterization strategies to prevent hydrate formation in Arctic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exploration and development of oil and gas reserves located in harsh offshore environments are characterized with high risk. Some of these reserves would be uneconomical if produced using conventional drilling technology due to increased drilling problems and prolonged non-productive time. Seeking new ways to reduce drilling cost and minimize risks has led to the development of Managed Pressure Drilling techniques. Managed pressure drilling methods address the drawbacks of conventional overbalanced and underbalanced drilling techniques. As managed pressure drilling techniques are evolving, there are many unanswered questions related to safety and operating pressure regimes. Quantitative risk assessment techniques are often used to answer these questions. Quantitative risk assessment is conducted for the various stages of drilling operations – drilling ahead, tripping operation, casing and cementing. A diagnostic model for analyzing the rotating control device, the main component of managed pressure drilling techniques, is also studied. The logic concept of Noisy-OR is explored to capture the unique relationship between casing and cementing operations in leading to well integrity failure as well as its usage to model the critical components of constant bottom-hole pressure drilling technique of managed pressure drilling during tripping operation. Relevant safety functions and inherent safety principles are utilized to improve well integrity operations. Loss function modelling approach to enable dynamic consequence analysis is adopted to study blowout risk for real-time decision making. The aggregation of the blowout loss categories, comprising: production, asset, human health, environmental response and reputation losses leads to risk estimation using dynamically determined probability of occurrence. Lastly, various sub-models developed for the stages/sub-operations of drilling operations and the consequence modelling approach are integrated for a holistic risk analysis of drilling operations.