1 resultado para Mean Field
em Memorial University Research Repository
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Aston University Research Archive (36)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (164)
- Biodiversity Heritage Library, United States (34)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (45)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (63)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (16)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Galway Mayo Institute of Technology, Ireland (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (18)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (6)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (22)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (26)
- Repositório da Produção Científica e Intelectual da Unicamp (14)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (102)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (30)
- Scielo Saúde Pública - SP (45)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (10)
- Universidade do Minho (22)
- Universidade dos Açores - Portugal (2)
- Universidade Federal de Uberlândia (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (15)
- Université de Montréal, Canada (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (176)
- University of Washington (2)
Resumo:
In this thesis, we consider N quantum particles coupled to collective thermal quantum environments. The coupling is energy conserving and scaled in the mean field way. There is no direct interaction between the particles, they only interact via the common reservoir. It is well known that an initially disentangled state of the N particles will remain disentangled at times in the limit N -> [infinity]. In this thesis, we evaluate the η-body reduced density matrix (tracing over the reservoirs and the N - η remaining particles). We identify the main disentangled part of the reduced density matrix and obtain the first order correction term in 1/N. We show that this correction term is entangled. We also estimate the speed of convergence of the reduced density matrix as N -> [infinity]. Our model is exactly solvable and it is not based on numerical approximation.