2 resultados para High frame rate display
em Memorial University Research Repository
Resumo:
A large series of laboratory ice crushing experiments was performed to investigate the effects of external boundary condition and indenter contact geometry on ice load magnitude under crushing conditions. Four boundary conditions were considered: dry cases, submerged cases, and cases with the presence of snow and granular ice material on the indenter surface. Indenter geometries were a flat plate, wedge shaped indenter, (reverse) conical indenter, and spherical indenter. These were impacted with artificially produced ice specimens of conical shape with 20° and 30° cone angles. All indenter – ice combinations were tested in dry and submerged environments at 1 mm/s and 100 mm/s indentation rates. Additional tests with the flat indentation plate were conducted at 10 mm/s impact velocity and a subset of scenarios with snow and granular ice material was evaluated. The tests were performed using a material testing system (MTS) machine located inside a cold room at an ambient temperature of - 7°C. Data acquisition comprised time, vertical force, and displacement. In several tests with the flat plate and wedge shaped indenter, supplementary information on local pressure patterns and contact area were obtained using tactile pressure sensors. All tests were recorded with a high speed video camera and still photos were taken before and after each test. Thin sections were taken of some specimens as well. Ice loads were found to strongly depend on contact condition, interrelated with pre-existing confinement and indentation rate. Submergence yielded higher forces, especially at the high indentation rate. This was very evident for the flat indentation plate and spherical indenter, and with restrictions for the wedge shaped indenter. No indication was found for the conical indenter. For the conical indenter it was concluded that the structural restriction due to the indenter geometry was dominating. The working surface for the water to act was not sufficient to influence the failure processes and associated ice loads. The presence of snow and granular ice significantly increased the forces at the low indentation rate (with the flat indentation plate) that were higher compared to submerged cases and far above the dry contact condition. Contact area measurements revealed a correlation of higher forces with a concurrent increase in actual contact area that depended on the respective boundary condition. In submergence, ice debris constitution was changed; ice extrusion, as well as crack development and propagation were impeded. Snow and granular ice seemed to provide additional material sources for establishing larger contact areas. The dry contact condition generally had the smallest real contact area, as well as the lowest forces. The comparison of nominal and measured contact areas revealed distinct deviations. The incorporation of those differences in contact process pressures-area relationships indicated that the overall process pressure was not substantially affected by the increased loads.
Resumo:
A heat loop suitable for the study of thermal fouling and its relationship to corrosion processes was designed, constructed and tested. The design adopted was an improvement over those used by such investigators as Hopkins and the Heat Transfer Research Institute in that very low levels of fouling could be detected accurately, the heat transfer surface could be readily removed for examination and the chemistry of the environment could be carefully monitored and controlled. In addition, an indirect method of electrical heating of the heat transfer surface was employed to eliminate magnetic and electric effects which result when direct resistance heating is employed to a test section. The testing of the loop was done using a 316 stainless steel test section and a suspension of ferric oxide and water in an attempt to duplicate the results obtained by Hopkins. Two types of thermal ·fouling resistance versus time curves were obtained . (i) Asymptotic type fouling curve, similar to the fouling behaviour described by Kern and Seaton and other investigators, was the most frequent type of fouling curve obtained. Thermal fouling occurred at a steadily decreasing rate before reaching a final asymptotic value. (ii) If an asymptotically fouled tube was cooled with rapid cir- ·culation for periods up to eight hours at zero heat flux, and heating restarted, fouling recommenced at a high linear rate. The fouling results obtained were observed to be similar and 1n agreement with the fouling behaviour reported previously by Hopkins and it was possible to duplicate quite closely the previous results . This supports the contention of Hopkins that the fouling results obtained were due to a crevice corrosion process and not an artifact of that heat loop which might have caused electrical and magnetic effects influencing the fouling. The effects of Reynolds number and heat flux on the asymptotic fouling resistance have been determined. A single experiment to study the effect of oxygen concentration has been carried out. The ferric oxide concentration for most of the fouling trials was standardized at 2400 ppM and the range of Reynolds number and heat flux for the study was 11000-29500 and 89-121 KW/M², respectively.