1 resultado para Graph DBMS, BenchMarking, OLAP, NoSQL
em Memorial University Research Repository
Filtro por publicador
- JISC Information Environment Repository (2)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (18)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (40)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (83)
- Boston University Digital Common (4)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- Cambridge University Engineering Department Publications Database (35)
- CentAUR: Central Archive University of Reading - UK (31)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (14)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (45)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- Nottingham eTheses (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (253)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de El Salvador (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Repositorio Institucional Universidad Católica de Colombia (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Uruguai (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (21)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (25)
- University of Southampton, United Kingdom (7)
- University of Washington (3)
Resumo:
In this thesis, we define the spectrum problem for packings (coverings) of G to be the problem of finding all graphs H such that a maximum G-packing (minimum G- covering) of the complete graph with the leave (excess) graph H exists. The set of achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is called the spectrum of leave (excess) graphs for G. Then, we consider this problem for trees with up to five edges. We will prove that for any tree T with up to five edges, if the leave graph in a maximum T-packing of the complete graph Kn has i edges, then the spectrum of leave graphs for T is the set of all simple graphs with i edges. In fact, for these T and i and H any simple graph with i edges, we will construct a maximum T-packing of Kn with the leave graph H. We will also show that for any tree T with k ≤ 5 edges, if the excess graph in a minimum T-covering of the complete graph Kn has i edges, then the spectrum of excess graphs for T is the set of all simple graphs and multigraphs with i edges, except for the case that T is a 5-star, for which the graph formed by four multiple edges is not achievable when n = 12.