2 resultados para Gas-phase Acidities

em Memorial University Research Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure, energetics and reactions of ions in the gas phase can be revealed by mass spectrometry techniques coupled to ions activation methods. Ions can gain enough energy for dissociation by absorbing IR light photons introduced by an IR laser to the mass spectrometer. Also collisions with a neutral molecule can increase the internal energy of ions and provide the dissociation threshold energy. Infrared multiple photon dissociation (IRMPD) or sustained off-resonance irradiation collision-induced dissociation (SORI-CID) methods are combined with Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometers where ions can be held at low pressures for a long time. The outcome of ion activation techniques especially when it is compared to the computational methods results is of great importance since it provides useful information about the structure, thermochemistry and reactivity of ions of interest. In this work structure, energetics and reactivity of metal cation complexes with dipeptides are investigated. Effect of metal cation size and charge as well as microsolvation on the structure of these complexes has been studied. Structures of bare and hydrated Na and Ca complexes with isomeric dipeptides AlaGly and GlyAla are characterized by means of IRMPD spectroscopy and computational methods. At the second step unimolecular dissociation reactions of singly charged and doubly charged multimetallic complexes of alkaline earth metal cations with GlyGly are examined by CID method. Also structural features of these complexes are revealed by comparing their IRMPD spectra with calculated IR spectra of possible structures. At last the unimolecular dissociation reactions of Mn complexes are studied. IRMPD spectroscopy along with computational methods is also employed for structural elucidation of Mn complexes. In addition the ion-molecule reactions of Mn complexes with CO and water are explored in the low pressures obtained in the ICR cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis involves two parts. The first is a new-proposed theoretical approach called generalized atoms in molecules (GAIM). The second is a computational study on the deamination reaction of adenine with OH⁻/nH₂O (n=0, 1, 2, 3) and 3H₂O. The GAIM approach aims to solve the energy of each atom variationally in the first step and then to build the energy of a molecule from each atom. Thus the energy of a diatomic molecule (A-B) is formulated as a sum of its atomic energies, EA and EB. Each of these atomic energies is expressed as, EA = Hᴬ + Vₑₑᴬᴬ + 1/2Vₑₑᴬ<>ᴮ EB = Hᴮ + Vₑₑᴮᴮ + 1/2Vₑₑᴬ<>ᴮ where; Hᴬ and Hᴮ are the kinetic and nuclear attraction energy of electrons of atoms A and B, respectively; Vₑₑᴬᴬ and Vₑₑᴮᴮ are the interaction energy between the electrons on atoms A and B, respectively; and Vₑₑᴬ<>ᴮ is the interaction energy between the electrons of atom A with the electrons of atom B. The energy of the molecule is then minimized subject to the following constraint, |ρA(r)dr + |ρB(r)dr = N where ρA(r) and ρB(r) are the electron densities of atoms A and B, respectively, and N is the number of electrons. The initial testing of the performance of GAIM was done through calculating dissociation curves for H₂, LiH, Li₂, BH, HF, HCl, N₂, F₂, and Cl₂. The numerical results show that GAIM performs very well with H₂, LiH, Li₂, BH, HF, and HCl. GAIM shows convergence problems with N₂, F₂, and Cl₂ due to difficulties in reordering the degenerate atomic orbitals Pₓ, Py, and Pz in N, F, and Cl atoms. Further work for the development of GAIM is required. Deamination of adenine results in one of several forms of premutagenic lesions occurring in DNA. In this thesis, mechanisms for the deamination reaction of adenine with OH⁻/nH₂O, (n = 0, 1, 2, 3) and 3H₂O were investigated. HF/6-31G(d), B3LYP/6-31G(d), MP2/6-31G(d), and B3LYP/6-31+G(d) levels of theory were employed to optimize all the geometries. Energies were calculated at the G3MP2B3 and CBS-QB3 levels of theory. The effect of solvent (water) was computed using the polarizable continuum model (PCM). Intrinsic reaction coordinate (IRC) calculations were performed for all transition states. Five pathways were investigated for the deamination reaction of adenine with OH⁻/nH₂O and 3H₂O. The first four pathways (A-D) begin with by deprotonation at the amino group of adenine by OH⁻, while pathway E is initiated by tautomerization of adenine. For all pathways, the next two steps involve the formation of a tetrahedral intermediate followed by dissociation to yield products via a 1,3-hydrogen shift. Deamination with a single OH⁻ has a high activation barrier (190 kJ mol⁻¹ using G3MP2B3 level) for the rate-determining step. Addition of one water molecule reduces this barrier by 68 kJ mol⁻¹ calculated at G3MP2B3 level. Adding more water molecules decreases the overall activation energy of the reaction, but the effect becomes smaller with each additional water molecule. The most plausible mechanism is pathway E, the deamination reaction of adenine with 3H₂O, which has an overall G3MP2B3 activation energy of 139 and 137 kJ mol⁻¹ in the gas phase and PCM, respectively. This barrier is lower than that for the deamination with OH⁻/3H₂O by 6 and 2 kJ mol⁻¹ in the gas phase and PCM, respectively.