1 resultado para Fault Detection and Diagnosis (FDD). Decision Trees. State Observer
em Memorial University Research Repository
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (17)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (26)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (68)
- Brock University, Canada (5)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (42)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Georgian Library Association, Georgia (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (23)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (14)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (106)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (88)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (33)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (3)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universita di Parma (1)
- Universitat de Girona, Spain (10)
- Université de Lausanne, Switzerland (48)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (171)
- University of Queensland eSpace - Australia (54)
- University of Washington (1)
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.