2 resultados para Extraction methods
em Memorial University Research Repository
Resumo:
Evaluation of the quality of the environment is essential for human wellness as pollutants in trace amounts can cause serious health problem. Nitrosamines are a group of compounds that are considered potential carcinogens and can be found in drinking water (as disinfection byproducts), foods, beverages and cosmetics. To monitor the level of these compounds to minimize daily intakes, fast and reliable analytical techniques are required. As these compounds are relatively highly polar, extraction and enrichment from environmental samples (aqueous) are challenging. Also, the trend of analytical techniques toward the reduction of sample size and minimization of organic solvent use demands new methods of analysis. In light of fulfilling these requirements, a new method of online preconcentration tailored to an electrokinetic chromatography is introduced. In this method, electroosmotic flow (EOF) was suppressed to increase the interaction time between analyte and micellar phase, therefore the only force to mobilize the neutral analytes is the interaction of analyte with moving micelles. In absence of EOF, polarity of applied potential was switched (negative or positive) to force (anionic or cationic) micelles to move toward the detector. To avoid the excessive band broadening due to longer analysis time caused by slow moving micelles, auxiliary pressure was introduced to boost the micelle movement toward the detector using an in house designed and built apparatus. Applying the external auxiliary pressure significantly reduced the analysis times without compromising separation efficiency. Parameters, such as type of surfactants, composition of background electrolyte (BGE), type of capillary, matrix effect, organic modifiers, etc., were evaluated in optimization of the method. The enrichment factors for targeted analytes were impressive, particularly; cationic surfactants were shown to be suitable for analysis of nitrosamines due to their ability to act as hydrogen bond donors. Ammonium perfluorooctanoate (APFO) also showed remarkable results in term of peak shapes and number of theoretical plates. It was shown that the separation results were best when a high conductivity sample was paired with a BGE of lower conductivity. Using higher surfactant concentrations (up to 200 mM SDS) than usual (50 mM SDS) for micellar electrokinetic chromatography (MEKC) improved the sweeping. A new method for micro-extraction and enrichment of highly polar neutral analytes (N-Nitrosamines in particular) based on three-phase drop micro-extraction was introduced and its performance studied. In this method, a new device using some easy-to-find components was fabricated and its operation and application demonstrated. Compared to conventional extraction methods (liquid-liquid extraction), consumption of organic solvents and operation times were significantly lower.
Resumo:
Produced water is a by-product of offshore oil and gas production, and is released in large volumes when platforms are actively processing crude oil. Some pollutants are not typically removed by conventional oil/water separation methods and are discharged with produced water. Oil and grease can be found dispersed in produced water in the form of tiny droplets, and polycyclic aromatic hydrocarbons (PAHs) are commonly found dissolved in produced water. Both can have acute and chronic toxic effects in marine environments even at low exposure levels. The analysis of the dissolved and dispersed phases are a priority, but effort is required to meet the necessary detection limits. There are several methods for the analysis of produced water for dispersed oil and dissolved PAHs, all of which have advantages and disadvantages. In this work, EPA Method 1664 and APHA Method 5520 C for the determination of oil and grease will be examined and compared. For the detection of PAHs, EPA Method 525 and PAH MIPs will be compared, and results evaluated. APHA Method 5520 C Partition-Infrared Method is a liquid-liquid extraction procedure with IR determination of oil and grease. For analysis on spiked samples of artificial seawater, extraction efficiency ranged from 85 – 97%. Linearity was achieved in the range of 5 – 500 mg/L. This is a single-wavelength method and is unsuitable for quantification of aromatics and other compounds that lack sp³-hybridized carbon atoms. EPA Method 1664 is the liquid-liquid extraction of oil and grease from water samples followed by gravimetric determination. When distilled water spiked with reference oil was extracted by this procedure, extraction efficiency ranged from 28.4 – 86.2%, and %RSD ranged from 7.68 – 38.0%. EPA Method 525 uses solid phase extraction with analysis by GC-MS, and was performed on distilled water and water from St. John’s Harbour, all spiked with naphthalene, fluorene, phenanthrene, and pyrene. The limits of detection in harbour water were 0.144, 3.82, 0.119, and 0.153 g/L respectively. Linearity was obtained in the range of 0.5-10 g/L, and %RSD ranged from 0.36% (fluorene) to 46% (pyrene). Molecularly imprinted polymers (MIPs) are sorbent materials made selective by polymerizing functional monomers and crosslinkers in the presence of a template molecule, usually the analytes of interest or related compounds. They can adsorb and concentrate PAHs from aqueous environments and are combined with methods of analysis including GC-MS, LC-UV-Vis, and desorption electrospray ionization (DESI)- MS. This work examines MIP-based methods as well as those methods previously mentioned which are currently used by the oil and gas industry and government environmental agencies. MIPs are shown to give results consistent with other methods, and are a low-cost alternative improving ease, throughput, and sensitivity. PAH MIPs were used to determine naphthalene spiked into ASTM artificial seawater, as well as produced water from an offshore oil and gas operation. Linearity was achieved in the range studied (0.5 – 5 mg/L) for both matrices, with R² = 0.936 for seawater and R² = 0.819 for produced water. The %RSD for seawater ranged from 6.58 – 50.5% and for produced water, from 8.19 – 79.6%.