2 resultados para Dynamic User Modelling

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the numerical modelling of Dynamic Position (DP) in pack ice. A two-dimensional numerical model for ship-ice interaction was developed using the Discrete Element Method (DEM). A viscous-elastic ice rheology was adopted to model the dynamic behaviour of the ice floes. Both the ship-ice and the ice-ice contacts were considered in the interaction force. The environment forces and the hydrodynamic forces were calculated by empirical formulas. After the current position and external forces were calculated, a Proportional-Integral-Derivative (PID) control and thrust allocation algorithms were applied on the vessel to control its motion and heading. The numerical model was coded in Fortran 90 and validated by comparing computation results to published data. Validation work was first carried out for the ship-ice interaction calculation, and former researchers’ simulation and model test results were used for the comparison. With confidence in the interaction model, case studies were conducted to predict the DP capability of a sample Arctic DP vessel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exploration and development of oil and gas reserves located in harsh offshore environments are characterized with high risk. Some of these reserves would be uneconomical if produced using conventional drilling technology due to increased drilling problems and prolonged non-productive time. Seeking new ways to reduce drilling cost and minimize risks has led to the development of Managed Pressure Drilling techniques. Managed pressure drilling methods address the drawbacks of conventional overbalanced and underbalanced drilling techniques. As managed pressure drilling techniques are evolving, there are many unanswered questions related to safety and operating pressure regimes. Quantitative risk assessment techniques are often used to answer these questions. Quantitative risk assessment is conducted for the various stages of drilling operations – drilling ahead, tripping operation, casing and cementing. A diagnostic model for analyzing the rotating control device, the main component of managed pressure drilling techniques, is also studied. The logic concept of Noisy-OR is explored to capture the unique relationship between casing and cementing operations in leading to well integrity failure as well as its usage to model the critical components of constant bottom-hole pressure drilling technique of managed pressure drilling during tripping operation. Relevant safety functions and inherent safety principles are utilized to improve well integrity operations. Loss function modelling approach to enable dynamic consequence analysis is adopted to study blowout risk for real-time decision making. The aggregation of the blowout loss categories, comprising: production, asset, human health, environmental response and reputation losses leads to risk estimation using dynamically determined probability of occurrence. Lastly, various sub-models developed for the stages/sub-operations of drilling operations and the consequence modelling approach are integrated for a holistic risk analysis of drilling operations.