2 resultados para Drill pipe

em Memorial University Research Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automation of managed pressure drilling (MPD) enhances the safety and increases efficiency of drilling and that drives the development of controllers and observers for MPD. The objective is to maintain the bottom hole pressure (BHP) within the pressure window formed by the reservoir pressure and fracture pressure and also to reject kicks. Practical MPD automation solutions must address the nonlinearities and uncertainties caused by the variations in mud flow rate, choke opening, friction factor, mud density, etc. It is also desired that if pressure constraints are violated the controller must take appropriate actions to reject the ensuing kick. The objectives are addressed by developing two controllers: a gain switching robust controller and a nonlinear model predictive controller (NMPC). The robust gain switching controller is designed using H1 loop shaping technique, which was implemented using high gain bumpless transfer and 2D look up table. Six candidate controllers were designed in such a way they preserve robustness and performance for different choke openings and flow rates. It is demonstrated that uniform performance is maintained under different operating conditions and the controllers are able to reject kicks using pressure control and maintain BHP during drill pipe extension. The NMPC was designed to regulate the BHP and contain the outlet flow rate within certain tunable threshold. The important feature of that controller is that it can reject kicks without requiring any switching and thus there is no scope for shattering due to switching between pressure and flow control. That is achieved by exploiting the constraint handling capability of NMPC. Active set method was used for computing control inputs. It is demonstrated that NMPC is able to contain kicks and maintain BHP during drill pipe extension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to relative ground movement, buried pipelines experience geotechnical loads. The imposed geotechnical loads may initiate pipeline deformations that affect system serviceability and integrity. Engineering guidelines (e.g., ALA, 2005; Honegger and Nyman, 2001) provide the technical framework to develop idealized structural models to analyze pipe‒soil interaction events and assess pipe mechanical response. The soil behavior is modeled using discrete springs that represent the geotechnical loads per unit pipe length developed during the interaction event. Soil forces are defined along three orthogonal directions (i.e., axial, lateral and vertical) to analyze the response of pipelines. Nonlinear load-displacement relationships of soil defined by a spring, is independent of neighboring spring elements. However, recent experimental and numerical studies demonstrate significant coupling effects during oblique (i.e., not along one of the orthogonal axes) pipe‒soil interaction events. In the present study, physical modeling using a geotechnical centrifuge was conducted to improve the current understanding of soil load coupling effects of buried pipes in loose and dense sand. A section of pipeline, at shallow burial depth, was translated through the soil at different oblique angles in the axial-lateral plane. The force exerted by the soil on pipe is critically examined to assess the significance of load coupling effects and establish a yield envelope. The displacements required to soil yield force are also examined to assess potential coupling in mobilization distance. A set of laboratory tests were conducted on the sand used for centrifuge modeling to find the stress-strain behavior of sand, which was used to examine the possible mechanisms of centrifuge model test. The yield envelope, deformation patterns, and interpreted failure mechanisms obtained from centrifuge modeling are compared with other physical modeling and numerical simulations available in the literature.