1 resultado para Diversification in industry
em Memorial University Research Repository
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (34)
- Aston University Research Archive (36)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (27)
- Central European University - Research Support Scheme (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (55)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Deposito de Dissertacoes e Teses Digitais - Portugal (12)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (201)
- DRUM (Digital Repository at the University of Maryland) (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (20)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (81)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (34)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (25)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (25)
- Universidade do Minho (14)
- Universidade dos Açores - Portugal (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (47)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (53)
- University of Queensland eSpace - Australia (36)
- University of Washington (1)
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.