2 resultados para Control experiment

em Memorial University Research Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transdermal drug delivery has recently received increasing attention in the face of growing challenges to deliver peptide and protein drugs. Controlled transdermal delivery is an important route for the delivery of peptides and proteins that can maintain the therapeutic effectiveness of the drug by minimizing enzymatic degradation which is a major concern in other noninvasive routes of delivery such as the oral route. Although the advantages of transdermal delivery are very desirable, the natural obstacle to drug entry imposed by the skin's barrier function makes it one of the most difficult route of administration. Iontophoresis and electroporation have been reported to be useful as permeation enhancing techniques in the transdermal delivery of protein and peptide drugs. The objective of present study is to use the above enhancement techniques to deliver cyclosporin A (CSA) to treat psoriasis. The in vitro experiments were performed using hairless rat skin as the model with Franz diffusion cells for iontophoresis and custom made diffusion cells for electroporation. The donor drug solution of CSA consisted of an aqueous solution of CSA - polymer solid dispersion, coevaporate, and/or a hydroethanolic solution of CSA PBS was used as the receiver solution. ³H labelled CSA and ¹⁴C labelled ethanol were used to facilitate analysis using a liquid scintillation counter. The control experiment consisted of passive diffusion study. Silver/silver chloride electrodes were used in all studies. In the iontophoresis experiments a constant DC current (0.5 mA/cm²) was used. In the electroporation experiments different delivery parameters were studied: (1) applied electrode voltage (Uelectrode), (2) decay time constant (τ), (3) the number of pulses delivered - single or multiple, and { 4) the time of diffusive contact with drug after electroporation ('contact duration'). Compared to the passive diffusion, iontophoresis did not result in a significant increase in the amount of CSA delivered transdermally with both the CSA-polymer donor and hydroethanolic drug solutions. With the use of electroporation there was a significant increase in the transdermal delivery, compared to passive transport. With the CSA-polymer coevaporate donor solution the increase in delivery was only about 6 fold higher whereas with the hydroethanolic solution the increase was about 60 times higher compared to passive diffusion. The 'contact duration• was an important fader and a 4-hour 'contact duration' was found to be the optimum time period required for effective transdermal delivery. Use of single pulse (τ=5.6 ms) electroporation resulted in a significant increase {p<0.05) in the delivery of CSA in skin {CSA.n) and EtOH in receiver (EtOHreceiver). With multiple pulse (τ=10 ms. 25 pulses) the increase in CSAskin was more pronounced with a 60 fold increase than compared to the passive delivery. However there was no significant increase in the other two quantities viz. CSAreceiver, and EtCHreceiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity.