1 resultado para Complex Adaptive Systems
em Memorial University Research Repository
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (52)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (214)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (47)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (3)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (32)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (96)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (22)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (2)
- University of Washington (3)
- WestminsterResearch - UK (3)
Resumo:
“Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.