4 resultados para Climatic data simulation
em Memorial University Research Repository
Resumo:
Archaeological fish otoliths have the potential to serve as proxies for both season of site occupation and palaeoclimate conditions. By sampling along the distinctive sub-annual seasonal bands of the otolith and completing a stable isotope (δ¹⁸O, δ¹³C) analysis, variations within the fish’s environment can be identified. Through the analysis of cod otoliths from two archaeological sites on Kiska Island, Gertrude Cove (KIS-010) and Witchcraft Point (KIS-005), this research evaluates a micromilling methodological approach to extracting climatic data from archaeological cod otoliths. In addition, δ¹⁸Ootolith data and radiocarbon dates frame a discussion of Pacific cod harvesting, site occupation, and changing climatic conditions on Kiska Island. To aid in the interpretation of the archaeological Pacific cod results, archaeological and modern Atlantic cod otoliths were also analyzed as a component of this study to develop. The Atlantic cod otoliths provided the methodological and interpretative framework for the study, and also served to assess the efficacy of this sampling strategy for archaeological materials and to add time-depth to existing datasets. The δ¹⁸Ootolith values successfully illustrate relative variation in ambient water temperature. The Pacific cod δ¹⁸O values demonstrate a weak seasonal signal identifiable up to year 3, followed by relatively stable values until year 6/7 when values continuously increase. Based on the δ¹⁸O values, the Pacific cod were exposed to the coldest water temperatures immediately prior to capture. The lack of a clear cycle of seasonal variation and the continued increase in values towards the otolith edge obscures the season of capture, and indicates that other behavioural, environmental, or methodological factors influenced the otolith δ¹⁸O values. It is suggested that Pacific cod would have been harvested throughout the year, and the presence of cod remains in Aleutian archaeological sites cannot be used as a reliable indicator of summer occupation. In addition, when the δ¹⁸O otolith values are integrated with radiocarbon dates and known climatic regimes, it is demonstrated that climatic conditions play an integral role in the pattern of occupation at Gertrude Cove. Initial site occupation coincides with the end of a neoglacial cooling period, and the most recent and continuous occupation coincides with the end of a localized warming period and the onset of the Little Ice Age (LIA).
Resumo:
This thesis investigates the numerical modelling of Dynamic Position (DP) in pack ice. A two-dimensional numerical model for ship-ice interaction was developed using the Discrete Element Method (DEM). A viscous-elastic ice rheology was adopted to model the dynamic behaviour of the ice floes. Both the ship-ice and the ice-ice contacts were considered in the interaction force. The environment forces and the hydrodynamic forces were calculated by empirical formulas. After the current position and external forces were calculated, a Proportional-Integral-Derivative (PID) control and thrust allocation algorithms were applied on the vessel to control its motion and heading. The numerical model was coded in Fortran 90 and validated by comparing computation results to published data. Validation work was first carried out for the ship-ice interaction calculation, and former researchers’ simulation and model test results were used for the comparison. With confidence in the interaction model, case studies were conducted to predict the DP capability of a sample Arctic DP vessel.
Resumo:
In this thesis, a numerical program has been developed to simulate the wave-induced ship motions in the time domain. Wave-body interactions have been studied for various ships and floating bodies through forced motion and free motion simulations in a wide range of wave frequencies. A three-dimensional Rankine panel method is applied to solve the boundary value problem for the wave-body interactions. The velocity potentials and normal velocities on the boundaries are obtained in the time domain by solving the mixed boundary integral equations in relation to the source and dipole distributions. The hydrodynamic forces are calculated by the integration of the instantaneous hydrodynamic pressures over the body surface. The equations of ship motion are solved simultaneously with the boundary value problem for each time step. The wave elevation is computed by applying the linear free surface conditions. A numerical damping zone is adopted to absorb the outgoing waves in order to satisfy the radiation condition for the truncated free surface. A numerical filter is applied on the free surface for the smoothing of the wave elevation. Good convergence has been reached for both forced motion simulations and free motion simulations. The computed added-mass and damping coefficients, wave exciting forces, and motion responses for ships and floating bodies are in good agreement with the numerical results from other programs and experimental data.
Resumo:
In this thesis, research for tsunami remote sensing using the Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDMs) is presented. Firstly, a process for simulating GNSS-R DDMs of a tsunami-dominated sea sur- face is described. In this method, the bistatic scattering Zavorotny-Voronovich (Z-V) model, the sea surface mean square slope model of Cox and Munk, and the tsunami- induced wind perturbation model are employed. The feasibility of the Cox and Munk model under a tsunami scenario is examined by comparing the Cox and Munk model- based scattering coefficient with the Jason-1 measurement. A good consistency be- tween these two results is obtained with a correlation coefficient of 0.93. After con- firming the applicability of the Cox and Munk model for a tsunami-dominated sea, this work provides the simulations of the scattering coefficient distribution and the corresponding DDMs of a fixed region of interest before and during the tsunami. Fur- thermore, by subtracting the simulation results that are free of tsunami from those with presence of tsunami, the tsunami-induced variations in scattering coefficients and DDMs can be clearly observed. Secondly, a scheme to detect tsunamis and estimate tsunami parameters from such tsunami-dominant sea surface DDMs is developed. As a first step, a procedure to de- termine tsunami-induced sea surface height anomalies (SSHAs) from DDMs is demon- strated and a tsunami detection precept is proposed. Subsequently, the tsunami parameters (wave amplitude, direction and speed of propagation, wavelength, and the tsunami source location) are estimated based upon the detected tsunami-induced SSHAs. In application, the sea surface scattering coefficients are unambiguously re- trieved by employing the spatial integration approach (SIA) and the dual-antenna technique. Next, the effective wind speed distribution can be restored from the scat- tering coefficients. Assuming all DDMs are of a tsunami-dominated sea surface, the tsunami-induced SSHAs can be derived with the knowledge of background wind speed distribution. In addition, the SSHA distribution resulting from the tsunami-free DDM (which is supposed to be zero) is considered as an error map introduced during the overall retrieving stage and is utilized to mitigate such errors from influencing sub- sequent SSHA results. In particular, a tsunami detection procedure is conducted to judge the SSHAs to be truly tsunami-induced or not through a fitting process, which makes it possible to decrease the false alarm. After this step, tsunami parameter estimation is proceeded based upon the fitted results in the former tsunami detec- tion procedure. Moreover, an additional method is proposed for estimating tsunami propagation velocity and is believed to be more desirable in real-world scenarios. The above-mentioned tsunami-dominated sea surface DDM simulation, tsunami detection precept and parameter estimation have been tested with simulated data based on the 2004 Sumatra-Andaman tsunami event.