2 resultados para Cilia and ciliary motion
em Memorial University Research Repository
Resumo:
This research focuses on developing active suspension optimal controllers for two linear and non-linear half-car models. A detailed comparison between quarter-car and half-car active suspension approaches is provided for improving two important scenarios in vehicle dynamics, i.e. ride quality and road holding. Having used a half-car vehicle model, heave and pitch motion are analyzed for those scenarios, with cargo mass as a variable. The governing equations of the system are analysed in a multi-energy domain package, i.e., 20-Sim. System equations are presented in the bond-graph language to facilitate calculation of energy usage. The results present optimum set of gains for both ride quality and road holding scenarios are the gains which has derived when maximum allowable cargo mass is considered for the vehicle. The energy implications of substituting passive suspension units with active ones are studied by considering not only the energy used by the actuator, but also the reduction in energy lost through the passive damper. Energy analysis showed less energy was dissipated in shock absorbers when either quarter-car or half-car controllers were used instead of passive suspension. It was seen that more energy could be saved by using half-car active controllers than the quarter-car ones. Results also proved that using active suspension units, whether quarter-car or half-car based, under those realistic limitations is energy-efficient and suggested.
Resumo:
In this thesis, a numerical program has been developed to simulate the wave-induced ship motions in the time domain. Wave-body interactions have been studied for various ships and floating bodies through forced motion and free motion simulations in a wide range of wave frequencies. A three-dimensional Rankine panel method is applied to solve the boundary value problem for the wave-body interactions. The velocity potentials and normal velocities on the boundaries are obtained in the time domain by solving the mixed boundary integral equations in relation to the source and dipole distributions. The hydrodynamic forces are calculated by the integration of the instantaneous hydrodynamic pressures over the body surface. The equations of ship motion are solved simultaneously with the boundary value problem for each time step. The wave elevation is computed by applying the linear free surface conditions. A numerical damping zone is adopted to absorb the outgoing waves in order to satisfy the radiation condition for the truncated free surface. A numerical filter is applied on the free surface for the smoothing of the wave elevation. Good convergence has been reached for both forced motion simulations and free motion simulations. The computed added-mass and damping coefficients, wave exciting forces, and motion responses for ships and floating bodies are in good agreement with the numerical results from other programs and experimental data.