2 resultados para Chebyshev And Binomial Distributions
em Memorial University Research Repository
Resumo:
In an audio cueing system, a teacher is presented with randomly spaced auditory signals via tape recorder or intercom. The teacher is instructed to praise a child who is on-task each time the cue is presented. In this study, a baseline was obtained on the teacher's praise rate and the children's on-task behaviour in a Grade 5 class of 37 students. Children were then divided into high, medium and low on-task groups. Followinq baseline, the teacher's praise rate and the children's on-task behaviour were observed under the following successively implemented conditions: (l) Audio Cueing 1: Audio cueing at a rate of 30 cues per hour was introduced into the classroom and remained in effect during subsequent conditions. A group of consistently low on-task children were delineated. (2) Audio Cueing Plus 'focus praise package': Instructions to direct two-thirds o£ the praise to children identified by the experimenter (consistently low on-task children), feedback and experimenter praise for meeting or surpassing the criterion distribution of praise ('focus praise package') were introduced. (3) Audio Cueing 2: The 'focus praise package' was removed. (4) Audio Cueing Plus 'increase praise package': Instructions to increase the rate of praise, feedback and experimenter praise for improved praise rates ('increase praise package') were introduced. The primary aims of the study were to determine the distribution of praise among hi~h, medium and low on-task children when audio cueinq was first introduced and to investigate the effect of the 'focus praise package' on the distribution of teacher praise. The teacher distributed her praise evenly among the hiqh, medium and low on-task groups during audio cueing 1. The effect of the 'focus praise package' was to increase the percentage of praise received by the consistently low on-task children. Other findings tended to suggest that audio cueing increased the teacher's praise rate. However, the teacher's praise rate unexpectedly decreased to a level considerably below the cued rate during audio cueing 2. The 'increase praise package' appeared to increase the teacher's praise rate above the audio cueing 2 level. The effect of an increased praise rate and two distributions of praise on on-task behaviour were considered. Significant increases in on-task behaviour were found in audio cueing 1 for the low on-task group, in the audio cueing plus 'focus praise package' condition for the entire class and the consistently low on-task group and in audio cueing 2 for the medium on-task group. Except for the high on-task children who did not change, the effects of the experimental manipulations on on-task behaviour were e quivocal. However, there were some indications that directing 67% of the praise to the consistently low on-task children was more effective for increasing this group's on-task behaviour than distributing praise equally among on-task groups.
Resumo:
In this thesis, a numerical program has been developed to simulate the wave-induced ship motions in the time domain. Wave-body interactions have been studied for various ships and floating bodies through forced motion and free motion simulations in a wide range of wave frequencies. A three-dimensional Rankine panel method is applied to solve the boundary value problem for the wave-body interactions. The velocity potentials and normal velocities on the boundaries are obtained in the time domain by solving the mixed boundary integral equations in relation to the source and dipole distributions. The hydrodynamic forces are calculated by the integration of the instantaneous hydrodynamic pressures over the body surface. The equations of ship motion are solved simultaneously with the boundary value problem for each time step. The wave elevation is computed by applying the linear free surface conditions. A numerical damping zone is adopted to absorb the outgoing waves in order to satisfy the radiation condition for the truncated free surface. A numerical filter is applied on the free surface for the smoothing of the wave elevation. Good convergence has been reached for both forced motion simulations and free motion simulations. The computed added-mass and damping coefficients, wave exciting forces, and motion responses for ships and floating bodies are in good agreement with the numerical results from other programs and experimental data.