2 resultados para Capillary tubes

em Memorial University Research Repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiosalt species are unstable, partially oxidized sulfur oxyanions formed in sulfur-rich environments but also during the flotation and milling of sulfidic minerals especially those containing pyrite (FeS₂) and pyrrhotite (Fe₍₁₋ₓ₎S, x = 0 to 0.2). Detecting and quantifying the major thiosalt species such as sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), trithionate (S₃O₆²⁻), tetrathionate (S₄O₆²⁻) and higher polythionates (SₓO₆²⁻, where 3 ≤ x ≤ 10) in the milling process and in the treated tailings is important to understand how thiosalts are generated and provides insight into potential treatment. As these species are unstable, a fast and reliable analytical technique is required for their analysis. Three capillary zone electrophoresis (CZE) methods using indirect UV-vis detection were developed for the simultaneous separation and determination of five thiosalt anions: SO₄²⁻, S₂O₃²⁻, S₃O₆²⁻, S₄O₆²⁻ and S₅O₆²⁻. Both univariate and multivariate experimental design approaches were used to optimize the most critical factors (background electrolyte (BGE) and instrumental conditions) to achieve fast separation and quantitative analysis of the thiosalt species. The mathematically predicted responses for the multivariate experiments were in good agreement with the experimental results. Limits of detection (LODs) (S/N = 3) for the methods were between 0.09 and 0.34 μg/mL without a sample stacking technique and nearly four-fold increase in LODs with the application of field-amplified sample stacking. As direct analysis of thiosalts by mass spectrometry (MS) is limited by their low m/z values and detection in negative mode electrospray ionization (ESI), which is typically less sensitive than positive ESI, imidazolium-based (IP-L-Imid and IP-T-Imid) and phosphonium-based (IP-T-Phos) tricationic ion-pairing reagents were used to form stable high mass ions non-covalent +1 ion-pairs with these species for ESI-MS analysis and the association constants (Kassoc) determined for these ion-pairs. Kassoc values were between 6.85 × 10² M⁻¹ and 3.56 × 10⁵ M⁻¹ with the linear IP-L-Imid; 1.89 ×10³ M⁻¹ and 1.05 × 10⁵ M⁻¹ with the trigonal IP-T-Imid ion-pairs; and 7.51×10² M⁻¹ and 4.91× 10⁴ M⁻¹ with the trigonal IP-T-Phos ion-pairs. The highest formation constants were obtained for S₃O₆²⁻ and the imidazolium-based linear ion-pairing reagent (IP-L-Imid), whereas the lowest were for IP-L-Imid: SO₄²⁻ ion-pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heat loop suitable for the study of thermal fouling and its relationship to corrosion processes was designed, constructed and tested. The design adopted was an improvement over those used by such investigators as Hopkins and the Heat Transfer Research Institute in that very low levels of fouling could be detected accurately, the heat transfer surface could be readily removed for examination and the chemistry of the environment could be carefully monitored and controlled. In addition, an indirect method of electrical heating of the heat transfer surface was employed to eliminate magnetic and electric effects which result when direct resistance heating is employed to a test section. The testing of the loop was done using a 316 stainless steel test section and a suspension of ferric oxide and water in an attempt to duplicate the results obtained by Hopkins. Two types of thermal ·fouling resistance versus time curves were obtained . (i) Asymptotic type fouling curve, similar to the fouling behaviour described by Kern and Seaton and other investigators, was the most frequent type of fouling curve obtained. Thermal fouling occurred at a steadily decreasing rate before reaching a final asymptotic value. (ii) If an asymptotically fouled tube was cooled with rapid cir- ·culation for periods up to eight hours at zero heat flux, and heating restarted, fouling recommenced at a high linear rate. The fouling results obtained were observed to be similar and 1n agreement with the fouling behaviour reported previously by Hopkins and it was possible to duplicate quite closely the previous results . This supports the contention of Hopkins that the fouling results obtained were due to a crevice corrosion process and not an artifact of that heat loop which might have caused electrical and magnetic effects influencing the fouling. The effects of Reynolds number and heat flux on the asymptotic fouling resistance have been determined. A single experiment to study the effect of oxygen concentration has been carried out. The ferric oxide concentration for most of the fouling trials was standardized at 2400 ppM and the range of Reynolds number and heat flux for the study was 11000-29500 and 89-121 KW/M², respectively.