2 resultados para COMB-SHAPED SUPRAMOLECULES
em Memorial University Research Repository
Resumo:
The three-dimensional reconstructions of Phoebichnus trochoides and Schaubcylindrichnus (Palaeophycus) heberti created as part of this thesis allow us to fully understand and characterize the three-dimensional morphology and palaeobiology of these common taxa. Three-dimensional reconstructions demonstrate that P. trochoides is a large stellate burrow composed of numerous long galleries produced by a deposit feeding organism. This study reports for the first time that the central zone is composed of stacked disk-shaped layers of highly bioturbated sediment, the radial burrows are composed of a sand-rich lining of pelleted annuli surrounding an active sand-rich fill, and the presence of subtle conical features above the radial galleries that are inferred to result from collapse cone feeding. Reconstructions of heberti demonstrate that the thick walled burrows are composed of sand-rich annular rings, are a broad U-shape, and may be either clustered or isolated. Our observations show that the morphology of heberti is inconsistent with the generic diagnosis of Palaeophycus, but is morphologically comparable to Schaubcylindrichnus, and is herein synonymised with Schaubcylindrichnus to create S. heberti comb. nov. The three-dimensional reconstructions have revealed a number of hitherto unknown morphological elements to both taxa which has facilitated new interpretations of the trace-makers behaviour. The data improves the taxonomic understanding of both P. trochoides and S. heberti which require significant taxonomic change and emendation of diagnoses at the species and genus level.
Resumo:
This Ph.D. thesis addresses current issues with ichnotaxonomic practice, and characterizes an exceptionally well preserved ichnological assemblage from the Carboniferous Stainmore Formation, Northumberland, United Kingdom. Samples were collected from closely localized float representative of various units throughout the succession, which was deposited in a storm-dominated marine shoreface. Three dominant ichnotaxa were selected for three-dimensional morphological analysis due to their complicated morphology and/or unclear taxonomic status: 1) Dactyloidites jordii isp. nov.; 2) Beaconites capronus, and; 3) Neoeione moniliformis comb. nov. Using serial grinding and photography, these ichnotaxa were ground and modelled in true colour. High-resolution models of three taxa produced in this study are the basis of the first complete three-dimensional consideration of the traces, and forms the basis for refined palaeobiological and ethological analysis of these taxa. Dactyloidites jordii isp. nov. is a stellate to palmate burrow composed of numerous long, narrow rays that exhibit three orders of branching arranged into tiered galleries radiating from a central shaft. It is considered to be the feeding structure produced by a vermiform organism. Beaconites capronus is a winding trace with distinctly chevron-shaped, meniscate backfill demonstrated herein to backfill the vertical shafts associated with its burrows in a comparable fashion to the horizontal portion of the burrow. This lack of a surface connection would result in the trace making organism being exposed to low-oxygen porewater. Coping with this porewater dysoxia could be approached by burrowing organisms in a number of ways: 1) revisiting the sediment-water interface; 2) creating periodic shafts; or 3) employing anaerobic metabolism. Neoeione moniliformis was originally introduced as Eione moniliformis, however, the genus Eione Tate, 1859 is a junior homonym of Eione Rafinesque, 1814. This led to the transfer of Eione moniliformis to Parataenidium. Through careful examination and three-dimensional characterization of topotypes, the transfer to Parataenidium moniliformis is demonstrated herein to be problematic, as Parataenidium refers to primarily horizontal burrows with two distinct layers and Eione moniliformis is composed of one distinct level. As such, the new ichnogenus Neoeione is created to accommodate Neoeione moniliformis.