2 resultados para COMB GENERATOR

em Memorial University Research Repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional reconstructions of Phoebichnus trochoides and Schaubcylindrichnus (Palaeophycus) heberti created as part of this thesis allow us to fully understand and characterize the three-dimensional morphology and palaeobiology of these common taxa. Three-dimensional reconstructions demonstrate that P. trochoides is a large stellate burrow composed of numerous long galleries produced by a deposit feeding organism. This study reports for the first time that the central zone is composed of stacked disk-shaped layers of highly bioturbated sediment, the radial burrows are composed of a sand-rich lining of pelleted annuli surrounding an active sand-rich fill, and the presence of subtle conical features above the radial galleries that are inferred to result from collapse cone feeding. Reconstructions of heberti demonstrate that the thick walled burrows are composed of sand-rich annular rings, are a broad U-shape, and may be either clustered or isolated. Our observations show that the morphology of heberti is inconsistent with the generic diagnosis of Palaeophycus, but is morphologically comparable to Schaubcylindrichnus, and is herein synonymised with Schaubcylindrichnus to create S. heberti comb. nov. The three-dimensional reconstructions have revealed a number of hitherto unknown morphological elements to both taxa which has facilitated new interpretations of the trace-makers behaviour. The data improves the taxonomic understanding of both P. trochoides and S. heberti which require significant taxonomic change and emendation of diagnoses at the species and genus level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct drive point absorber is a robust and efficient system for wave energy harvesting, where the linear generator represents the most complex part of the system. Therefore, its design and optimization are crucial tasks. The tubular shape of a linear generator’s magnetic circuit offers better permanent magnet flux encapsulation and reduction in radial forces on the translator due to its symmetry. A double stator topology can improve the power density of the linear tubular machine. Common designs employ a set of aligned stators on each side of a translator with radially magnetized permanent magnets. Such designs require doubling the amount of permanent magnet material and lead to an increase in the cogging force. The design presented in this thesis utilizes a translator with buried axially magnetized magnets and axially shifted positioning of the two stators such that no additional magnetic material, compared to single side machine, is required. In addition to the conservation of magnetic material, a significant improvement in the cogging force occurs in the two phase topology, while the double sided three phase system produces more power at the cost of a small increase in the cogging force. The analytical and the FEM models of the generator are described and their results compared to the experimental results. In general, the experimental results compare favourably with theoretical predictions. However, the experimentally observed permanent magnet flux leakage in the double sided machine is larger than predicted theoretically, which can be justified by the limitations in the prototype fabrication and resulting deviations from the theoretical analysis.