2 resultados para ALKYLCOBALT REAGENTS

em Memorial University Research Repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thiosalt species are unstable, partially oxidized sulfur oxyanions formed in sulfur-rich environments but also during the flotation and milling of sulfidic minerals especially those containing pyrite (FeS₂) and pyrrhotite (Fe₍₁₋ₓ₎S, x = 0 to 0.2). Detecting and quantifying the major thiosalt species such as sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), trithionate (S₃O₆²⁻), tetrathionate (S₄O₆²⁻) and higher polythionates (SₓO₆²⁻, where 3 ≤ x ≤ 10) in the milling process and in the treated tailings is important to understand how thiosalts are generated and provides insight into potential treatment. As these species are unstable, a fast and reliable analytical technique is required for their analysis. Three capillary zone electrophoresis (CZE) methods using indirect UV-vis detection were developed for the simultaneous separation and determination of five thiosalt anions: SO₄²⁻, S₂O₃²⁻, S₃O₆²⁻, S₄O₆²⁻ and S₅O₆²⁻. Both univariate and multivariate experimental design approaches were used to optimize the most critical factors (background electrolyte (BGE) and instrumental conditions) to achieve fast separation and quantitative analysis of the thiosalt species. The mathematically predicted responses for the multivariate experiments were in good agreement with the experimental results. Limits of detection (LODs) (S/N = 3) for the methods were between 0.09 and 0.34 μg/mL without a sample stacking technique and nearly four-fold increase in LODs with the application of field-amplified sample stacking. As direct analysis of thiosalts by mass spectrometry (MS) is limited by their low m/z values and detection in negative mode electrospray ionization (ESI), which is typically less sensitive than positive ESI, imidazolium-based (IP-L-Imid and IP-T-Imid) and phosphonium-based (IP-T-Phos) tricationic ion-pairing reagents were used to form stable high mass ions non-covalent +1 ion-pairs with these species for ESI-MS analysis and the association constants (Kassoc) determined for these ion-pairs. Kassoc values were between 6.85 × 10² M⁻¹ and 3.56 × 10⁵ M⁻¹ with the linear IP-L-Imid; 1.89 ×10³ M⁻¹ and 1.05 × 10⁵ M⁻¹ with the trigonal IP-T-Imid ion-pairs; and 7.51×10² M⁻¹ and 4.91× 10⁴ M⁻¹ with the trigonal IP-T-Phos ion-pairs. The highest formation constants were obtained for S₃O₆²⁻ and the imidazolium-based linear ion-pairing reagent (IP-L-Imid), whereas the lowest were for IP-L-Imid: SO₄²⁻ ion-pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of green chemistry is dedicated to eliminating or reducing toxic waste. One route to accomplish this goal is to explore alternative reaction conditions and parameters resulting in the development of more benign synthetic routes and reagents. The primary focus of this research is to find optimal reaction conditions for the oxidation of a primary alcohol to an aldehyde. As a case study, the oxidation of benzyl alcohol to benzaldehyde, a common industrial process, was examined. Traditionally carried out using the Jones Reagent, commonly referred to as chromium (IV) oxide or chromium trioxide (CrO3) in sulphuric acid, a great deal of research went into utilizing less toxic reagents, such as MnO2 or KMnO4 supported on a clay base. This research has led to an improvement on these alternatives, using a lithium chloride (LiCl) catalyst in a montmorillonite K10 clay solid phase, together with the oxidizing agent hydrogen peroxide, as even greener alternatives to these traditional oxidizing agents. Experiments were carried out to determine the lifetime of this LiCl/clay system as compared to MnO2 and KMnO4, to investigate its ability to catalyze the oxidation of other aromatic alcohols (such as 4-methoxybenzyl alcohol and diphenylmethanol), and to further improve the system’s adherence to green chemistry principles. Green solvent alternatives were examined by replacing the toluene solvent with dimethylcarbonate (DMC), and reaction conditions were optimized to improve product yield. It was determined that the LiCl/H2O2 system was, in most cases, equally as effective at catalyzing the oxidation of benzyl alcohol to benzaldehyde. Although the catalyst and oxidizing agent eliminated the toxic waste generated from chromium reagents, it offered significant challenges in product isolation, because of an aqueous-organic phase separation.