144 resultados para Newfoundland and Labrador
Resumo:
Global forests are being degraded at an alarming rate; hence ecological restoration becomes an integral component ensuring future forest health. Beneficial effects of restoration will arise from scientifically based practices that are efficient and effective. On the island of Newfoundland, moose (Alces alces) have become overabundant since their introduction in early 1900’s. Intensive selective browsing by moose on foundation species such as balsam fir (Abies balsamea) interacts with natural insect disturbance and limits advanced regeneration, creating moose meadows. In this thesis, I focused on where and how active restoration should be implemented in Terra Nova National Park (Newfoundland, Canada) balsam fir forests within the context of the natural disturbance regime under conditions of overbrowsing. Environmental surveys and experimental seedling planting were carried out along a disturbance gradient from closed canopy forest to large insect-disturbed stands. To develop cost-effective and science-based planting protocols, several ground treatments were tested to enhance seedlings success: (1) control, field planting, (2) removal of the aboveground vegetation and (3) ground scarification. Results indicate that (1) priority for restoration should be given to insectdisturbed areas > 5 ha rather than smaller gaps, and (2) that active restoration should be implemented following scientifically determined field planting protocols, as no substantial benefit was detected following ground treatment. The recommendations arising for this thesis allow for the development of efficient and effective protocols towards the reestablishment of multi-aged balsam fir forests in Newfoundland.
Resumo:
Through bioturbation, the macrofauna mediate chemical, physical and biological processes in marine benthic ecosystems. Because of the importance of bioturbation as ecosystem mediator, various studies have been conducted on bioturbation intensity and depth, and the relation of bioturbation processes to environmental condition and ecosystem state. This thesis builds on those previous studies, using a standard field and analytical protocol and by expanding the geographical scale to three climatic regions along Canada’s East Coast and Arctic margins, the Arctic Archipelago, the coastal Subarctic (Labrador Fjords), and the temperate continental climate zone (Gulf of Maine and adjacent Scotian shelf/slope). This Ph.D. study provides a comprehensive assessment of environmental influences on bioturbation along gradients in latitude and ocean depth. Bioturbation intensity, mixing depth, and bioturbation structures were studied in relation to the quantity and quality of potential food sources (organic matter) and substrate characteristics to gain an understanding of the environmental controls on bioturbation in these regions. The three main research chapters of this thesis are divided based on the contrasting climatic and geographical regions studied. The analytical approach included seabed sampling with a boxcorer, describing the sedimentary fabric and bioturbation structures by X-radiography, estimating bioturbation intensity and depth applying a biodiffusion model to particle tracer profiles of ²¹⁰Pbₓs, ²²⁸Thₓs, ²³⁴Thₓs, and chlorophyll-a, and analyzing benthic organic matter and substrate characteristics. Strong regional and cross-climatic relations of bioturbation processes with combinations of environmental factors were observed. In particular, bioturbation depth and the vertical extent of bioturbation structures responded to the environmental patterns observed and, therefore, represented potentially applicable predictors of environmental conditions and ecosystem state. The results of this Ph.D. study may be further extended to other geographical regions with similar environmental characteristics to predict the effects of benthic habitat alterations through environmental stresses on a global scale. Integrated with biological data produced by fellow CHONe scientists the presented data may provide valuable information about functional roles of macrofaunal species and community traits in marine benthic ecosystems along Canada’s extensive East Coast and Arctic margins.
Resumo:
Collaborative sharing of information is becoming much more needed technique to achieve complex goals in today's fast-paced tech-dominant world. Personal Health Record (PHR) system has become a popular research area for sharing patients informa- tion very quickly among health professionals. PHR systems store and process sensitive information, which should have proper security mechanisms to protect patients' private data. Thus, access control mechanisms of the PHR should be well-defined. Secondly, PHRs should be stored in encrypted form. Cryptographic schemes offering a more suitable solution for enforcing access policies based on user attributes are needed for this purpose. Attribute-based encryption can resolve these problems, we propose a patient-centric framework that protects PHRs against untrusted service providers and malicious users. In this framework, we have used Ciphertext Policy Attribute Based Encryption scheme as an efficient cryptographic technique, enhancing security and privacy of the system, as well as enabling access revocation. Patients can encrypt their PHRs and store them on untrusted storage servers. They also maintain full control over access to their PHR data by assigning attribute-based access control to selected data users, and revoking unauthorized users instantly. In order to evaluate our system, we implemented CP-ABE library and web services as part of our framework. We also developed an android application based on the framework that allows users to register into the system, encrypt their PHR data and upload to the server, and at the same time authorized users can download PHR data and decrypt it. Finally, we present experimental results and performance analysis. It shows that the deployment of the proposed system would be practical and can be applied into practice.
Resumo:
Geometric frustration occurs in the rare earth pyrochlores due to magnetic rare earth ions occupying the vertices of the network of corner-sharing tetrahedra. In this research, we have two parts. In the first one we study the phase transition to the magnetically ordered state at low temperature in the pyrochlore Er₂Ti₂O₇. The molecular field method was used to solve this problem. In the second part, we analyse the crystal electric field Hamiltonian for the rare earth sites. The rather large degeneracy of the angular momentum J of the rare earth ion is lifted by the crystal electric field due to the neighboring ions in the crystal. By rewriting the Stevens operators in the crystal electric field Hamiltonian ᴴCEF in terms of charge quadruple operators, we can identify unstable order parameters in ᴴCEF . These may be related to lattice instabilities in Tb₂Ti₂O₇.
Resumo:
This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.
Resumo:
Conservation of large felids is not only about collecting ecological information; it is also about understanding people’s values, beliefs, attitudes and behaviour. The overarching goal of this thesis is to assess the relationship between people and jaguars and pumas. Specifically by contributing to the understanding of public acceptance of big cats, as well as the forces (cognitive and social) that influence people’s acceptability. Self-administered questionnaires (n=326) were applied to rural residents outside two protected areas in the State of Sao Paulo: Intervales and PETAR state parks. Findings showed that the acceptability of killing big cats varied accordingly to attitudinal type (positive and negative). Additionally, acceptability of jaguars and pumas was influenced by existence values, attitudes and park credibility. Human dimensions research helped in understanding the relationship between people and the big cats, highlighting the need, for example, to improve the credibility of the parks in the communities and to decrease the fear of jaguars and pumas.
Resumo:
The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity.
Resumo:
This study investigates teacher‟s cultural values and accountability in Nigeria. A questionnaire developed by Professor Rosenblatt (University of Haifa, Israel) was used to gather quantitative data from 483 secondary teachers across Oyo, Osun, Ogun, and Lagos States in Southwest Nigeria. Data collected were analyzed using percentages, descriptive statistics, and analysis of variance (ANOVA). The findings show that Nigerian teachers have high dispositions towards both bureaucratic (external) and internal (professional) accountability and their scores for internal accountability (M= 4.4286; SD= 0.5726) were higher than their scores for external accountability (M= 3.9759; SD = 0.5575). Geographical locations made a significant difference in the scores. Teachers from urban and suburban areas demonstrate higher scores than teachers from the rural in both bureaucratic (external) and internal (professional) accountability
Resumo:
Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.
Resumo:
The condition and quality of cultured blue mussels (Mytilus edulis) are affected by various environmental characteristics including temperature, salinity, food concentration, composition and year-to-year variability, waves, tides, and currents. Mussels are a keystone species in the ecosystem, affecting the surrounding environment through filtration, biodeposition and nutrient recycling. This study evaluated the effects of culture depth and post-harvest handling on cultured blue mussels in Newfoundland, Canada. Depth was examined over two years; three shallow water (5 m depth) and three deep water sites (15 m depth) were compared for environmental characteristics, mussel physiological stress response, growth, and biochemical composition. The area examined presented complex hydrodynamic characteristics; deep water sites appeared to be located more often near or within the pycnocline than shallow water sites. Deep water sites presented lower temperatures than shallow sites from spring to fall. Physiological stress response varied seasonally, but was unaffected by culture depth. In Year 1 shallow and deep water mussels presented similar growth, while in Year 2 deep water mussels showed better final condition. Lipid and glycogen showed seasonal variation, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a higher content of omega-3s PUFA in deep water sites at the end of Year 2. Under extreme weather conditions, deep water appeared to provide a more stable environment for mussel growth than shallow water. Harvested mussels were kept under ambient live-holding conditions for one month during the fall, winter, and spring seasons. They were compared to freshly harvested mussels for condition, biochemical profile and palatability. A progressive loss of dry tissue weight and an increase in water content were shown over the holding period during the fall and spring seasons, when compared to field controls. The biochemical analysis suggested seasonal changes; differences in triacylglycerol content were found in the spring season when compared with controls. The palatability data indicated that the panellists were unable to determine a difference between mussels kept in holding and those freshly harvested from the site. This study presents new knowledge for mussel farming, especially in terms of environmental interactions and deep water culture.
Resumo:
Heat shock factor 1 (Hsf1) is a protein known to be involved in both stress and developmental processes through the regulation of heat shock proteins. However, to date, no studies have been performed on examining its expression in the myometrium during pregnancy. During pregnancy, the uterus undergoes many structural and functional changes, and it also endures both mechanical and hormonal stresses. Therefore, the purpose of this thesis was to characterize the expression of Hsf1, and its associated factors in the uterus during pregnancy. Immunoblot analysis determined that Hsf1 protein expression was high early in gestation (day (d) 6) and then decreased significantly from mid gestation onwards (specifically when compared to d15, d17 and d22, p<0.05, n=5). Immunofluorescence analysis, demonstrated that Hsf1 was readily detectable in the myometrium but did not markedly change over gestation. Hsf1 was also localized mainly in the cytoplasm of myometrial cells, with some granular staining in the nucleus. Many related proteins of Hsf1 were also detectable in the myometrium, during pregnancy, such as PARP-1 and Hsf2. These results indicate that Hsf1 could play an important role early in gestation either to aid in myometrial cell proliferation or to upregulate expression of key genes necessary for subsequent myometrial differentiation.
Resumo:
This thesis begins by studying the thickness of evaporative spin coated colloidal crystals and demonstrates the variation of the thickness as a function of suspension concentration and spin rate. Particularly, the films are thicker with higher suspension concentration and lower spin rate. This study also provides evidence for the reproducibility of spin coating in terms of the thickness of the resulting colloidal films. These colloidal films, as well as the ones obtained from various other methods such as convective assembly and dip coating, usually possess a crystalline structure. Due to the lack of a comprehensive method for characterization of order in colloidal structures, a procedure is developed for such a characterization in terms of local and longer range translational and orientational order. Translational measures turn out to be adequate for characterizing small deviations from perfect order, while orientational measures are more informative for polycrystalline and highly disordered crystals. Finally, to obtain an understanding of the relationship between dynamics and structure, the dynamics of colloids in a quasi-2D suspension as a function of packing fraction is studied. The tools that are used are mean square displacement (MSD) and the self part of the van Hove function. The slow down of dynamics is observed as the packing fraction increases, accompanied with the emergence of 6-fold symmetry within the system. The dynamics turns out to be non-Gaussian at early times and Gaussian at later times for packing fractions below 0.6. Above this packing fraction, the dynamics is non-Gaussian at all times. Also the diffusion coefficient is calculated from MSD and the van Hove function. It goes down as the packing fraction is increased.
Resumo:
Due to relative ground movement, buried pipelines experience geotechnical loads. The imposed geotechnical loads may initiate pipeline deformations that affect system serviceability and integrity. Engineering guidelines (e.g., ALA, 2005; Honegger and Nyman, 2001) provide the technical framework to develop idealized structural models to analyze pipe‒soil interaction events and assess pipe mechanical response. The soil behavior is modeled using discrete springs that represent the geotechnical loads per unit pipe length developed during the interaction event. Soil forces are defined along three orthogonal directions (i.e., axial, lateral and vertical) to analyze the response of pipelines. Nonlinear load-displacement relationships of soil defined by a spring, is independent of neighboring spring elements. However, recent experimental and numerical studies demonstrate significant coupling effects during oblique (i.e., not along one of the orthogonal axes) pipe‒soil interaction events. In the present study, physical modeling using a geotechnical centrifuge was conducted to improve the current understanding of soil load coupling effects of buried pipes in loose and dense sand. A section of pipeline, at shallow burial depth, was translated through the soil at different oblique angles in the axial-lateral plane. The force exerted by the soil on pipe is critically examined to assess the significance of load coupling effects and establish a yield envelope. The displacements required to soil yield force are also examined to assess potential coupling in mobilization distance. A set of laboratory tests were conducted on the sand used for centrifuge modeling to find the stress-strain behavior of sand, which was used to examine the possible mechanisms of centrifuge model test. The yield envelope, deformation patterns, and interpreted failure mechanisms obtained from centrifuge modeling are compared with other physical modeling and numerical simulations available in the literature.