3 resultados para zero-knowledge random access machine interattività

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eye tracking as an interface to operate a computer is under research for a while and new systems are still being developed nowadays that provide some encouragement to those bound to illnesses that incapacitates them to use any other form of interaction with a computer. Although using computer vision processing and a camera, these systems are usually based on head mount technology being considered a contact type system. This paper describes the implementation of a human-computer interface based on a fully non-contact eye tracking vision system in order to allow people with tetraplegia to interface with a computer. As an assistive technology, a graphical user interface with special features was developed including a virtual keyboard to allow user communication, fast access to pre-stored phrases and multimedia and even internet browsing. This system was developed with the focus on low cost, user friendly functionality and user independency and autonomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data traces, consisting of logs about the use of mobile and wireless networks, have been used to study the statistics of encounters between mobile nodes, in an attempt to predict the performance of opportunistic networks. Understanding the role and potential of mobile devices as relaying nodes in message dissemination and delivery depends on the knowledge about patterns and number of encounters among nodes. Data traces about the use of WiFi networks are widely available and can be used to extract large datasets of encounters between nodes. However, these logs only capture indirect encounters between nodes, and the resulting encounters datasets might not realistically represent the spatial and temporal behaviour of nodes. This paper addresses the impact of overlapping between the coverage areas of different Access Points of WiFi networks in extracting encounters datasets from the usage logs. Simulation and real-world experimental results show that indirect encounter traces extracted directly from these logs strongly underestimate the opportunities for direct node-to- node message exchange in opportunistic networks.