4 resultados para univariate and multivariate yield indices

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Finanças

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To evaluate the differences in linear and complex heart rate dynamics in twin pairs according to fetal sex combination [male-female (MF), male-male (MM), and female-female (FF)]. Methods: Fourteen twin pairs (6 MF, 3 MM, and 5 FF) were monitored between 31 and 36.4 weeks of gestation. Twenty-six fetal heart rate (FHR) recordings of both twins were simultaneously acquired and analyzed with a system for computerized analysis of cardiotocograms. Linear and nonlinear FHR indices were calculated. Results: Overall, MM twins presented higher intrapair average in linear indices than the other pairs, whereas FF twins showed higher sympathetic-vagal balance. MF twins exhibited higher intrapair average in entropy indices and MM twins presented lower entropy values than FF twins considering the (automatically selected) threshold rLu. MM twin pairs showed higher intrapair differences in linear heart rate indices than MF and FF twins, whereas FF twins exhibited lower intrapair differences in entropy indices. Conclusions: The results of this exploratory study suggest that twins have sex-specific differences in linear and nonlinear indices of FHR. MM twins expressed signs of a more active autonomic nervous system and MF twins showed the most active complexity control system. These results suggest that fetal sex combination should be taken into consideration when performing detailed evaluation of the FHR in twins.