13 resultados para uniform spacing
em Universidade do Minho
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
In order to investigate the out-of-plane behaviour of masonry infill walls, quasi-static testing was performed on a masonry infill walls built inside a reinforced concrete frame by means of an airbag system to apply the uniform out-of-plane load to each component of the infill. The main advantage of this testing setup is that the out-of-plane loading can be applied more uniformly in the walls, contrarily to point load configuration. The test was performed under displacement control by selecting the mid-point of the infill as control point. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. The effect of the distance between the reaction frame of the airbag and the masonry infill on the effective contact area was previously analysed. Four load cells were attached to the reaction frame to measure the out-of-plane force. The effective contact area of the airbag was calculated by dividing the load measured in load cells by the pressure inside the airbag. When the distance between the reaction walls and the masonry infill wall is smaller, the effective area is closer to the nominal area of the airbag. Deformation and crack patterns of the infill confirm the formation of arching mechanism and two-way bending of the masonry infill. Until collapse of the horizontal interface between infill and upper beam in RC frame, the infill bends in two directions but the failure of that interface which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam results in the crack opening trough a well-defined path and the consequent collapse of the infill.
Resumo:
Dissertação de mestrado em Engenharia de Sistemas
Resumo:
Tese de Doutoramento em Psicologia - Especialidade em Psicologia Experimental e Ciências Cognitivas
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
The performance of the ATLAS muon trigger system has been evaluated with proton--proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. The performance was primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency is measured for the single-muon trigger for a kinematic region of the transverse momentum pT between 25 and 100 GeV, with a statistical uncertainty of less than 0.01% and a systematic uncertainty of 0.6%. The performance is also compared in detail to the predictions from simulation. The efficiency was measured over a wide pT range (a few GeV to several hundred GeV) by using muons from J/ψ mesons,W bosons, and top and antitop quarks. It showed highly uniform and stable performance.
Resumo:
As orientações de política educativa de âmbito global têm colocado no centro das suas prioridades a promoção da excelência, da qualidade e da eficácia dos sistemas de ensino e formação. Este texto propõe-se debater o impacto desta agenda na realidade educativa portuguesa a partir de um olhar sobre a política em estado prático, isto é, sobre os mecanismos de apropriação ocorridos no espaço organizacional e sua articulação com as especificidades culturais da escola. À luz deste enfoque, pretende-se compreender de que forma a cultura de escola redefine localmente a sua missão educativa, ajustando-a aos propósitos democráticos e igualitários e/ou às exigências de promoção da excelência e do mérito. Partindo da hipótese de que as dimensões culturais exercem um papel central na recontextualização das políticas educativas, procurou-se identificar no sistema educativo português o alcance de um dos rituais mais expressivos da missão da escola: os rituais de distinção dos melhores alunos. Da análise de conteúdo efetuada a cerca de 1500 documentos produzidos no contexto das escolas públicas com ensino secundário, resultou um mapeamento nacional dos rituais de distinção. As conclusões apontam para uma forte adesão das instituições com ensino secundário aos rituais de distinção ou de reconhecimento público do mérito. Contudo, nem a sua configuração nem os critérios de seleção apresentam um carácter uniforme, o que nos aponta para a existência de distintas concetualizações de excelência decorrentes das diferentes culturas de escola e do seu papel na definição da sua política e do seu critério de sucesso.
Resumo:
Whether at the zero spin density m = 0 and finite temperatures T > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L → ∞, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperature T > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
In this paper, Isopropanol (IPA) availability during the anisotropic etching of silicon in Potassium Hydroxide (KOH) solutions was investigated. Squares of 8 to 40 m were patterned to (100) oriented silicon wafers through DWL (Direct Writing Laser) photolithography. The wet etching process was performed inside an open HDPE (High Density Polyethylene) flask with ultrasonic agitation. IPA volume and evaporation was studied in a dynamic etching process, and subsequent influence on the silicon etching was inspected. For the tested conditions, evaporation rates for water vapor and IPA were determined as approximately 0.0417 mL/min and 0.175 mL/min, respectively. Results demonstrate that IPA availability, and not concentration, plays an important role in the definition of the final structure. Transversal SEM (Scanning Electron Microscopy) analysis demonstrates a correlation between microloading effects (as a consequence of structure spacing) and the angle formed towards the (100) plane.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Fetal movements and fetal heart rate (FHR) are well-established markers of fetal well-being and maturation of the fetal central nervous system. The purpose of this paper is to review and discuss the available knowledge on fetal movements and heart rate patterns in twin pregnancies. There is some evidence for an association or similarity in fetal movement incidences or FHR patterns between both members of twin pairs. However, the temporal occurrence of these patterns seems to be for the most part asynchronous, especially when stricter criteria are used to define synchrony. The available data suggest that fetal behavior is largely independent of sex combination, fetal position, and presentation. Conversely, chorionicity appears to have some influence on fetal behavior, mainly before 30 weeks of gestation. There is preliminary evidence for the continuity of inter-individual differences in fetal activity and FHR patterns over pregnancy. Comparisons between studies are limited by large methodological differences and absence of uniform concepts and definitions. Future studies with high methodological quality are needed to provide a more comprehensive knowledge of normal fetal behavior in twin pregnancy.