7 resultados para toxic proteins
em Universidade do Minho
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain moulds, being ochratoxin A (OTA) one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [1]. According to the Regulation No. 1881/2006 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Therefore, the aim of this work was to know the effect of different fining agents on OTA removal, as well as their impact on white and red wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white and red wines. Trials were performed in wines artificially supplemented (at a final concentration of 10 µg/L) with OTA. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. In red wine, removals between 6-19% were obtained with egg albumin, yeast cell walls, pea protein, isinglass, gelatine, polyvinylpolypyrrolidone and chitosan. The most effective fining agents in removing OTA from red wine were an activated carbon (66%) followed again by the commercial formulation (55%), being activated carbon a well-known adsorbent of mycotoxins. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.
Resumo:
A ocorrência de bolores micotoxigénicos pertencentes aos géneros Aspergillus, Penicillium e Fusarium em alimentos para consumo Humano e animal, tem um impacto importante sobre a saúde pública e constitui também um importante problema económico. Isto é devido à síntese por este tipo de fungos filamentosos de metabolitos altamente tóxicos conhecidos como micotoxinas. A maioria das micotoxinas são substâncias cancerígenas, mutagénicas, neurotóxicas e imunossupressoras, sendo a ocratoxina A (OTA) uma das mais importantes. A OTA é uma micotoxina, tóxica para os animais e Humanos principalmente devido às suas propriedades nefrotóxicas. Alguns grupos de bactérias gram positivas nomeadamente as bactérias do ácido láctico (BAL) são capazes de controlar o crescimento de fungos, melhorando e aumentando a vida útil de muitos produtos fermentados e, assim, reduzir os riscos para a saúde provocados pela exposição às micotoxinas. Algumas BAL são, também, capazes de destoxificar certas micotoxinas. Em trabalhos anteriores do nosso grupo foi observada a biodegradação da OTA por estirpes de Pediococcus parvulus isoladas de vinhos do Douro. Assim, com este trabalho, pretendeu-se compreender com maior detalhe o processo de biodegradação da OTA pelas referidas estirpes e identificar quais as enzimas que estão associadas à sua biodegradação. Para atingir este objetivo utilizaram-se algumas ferramentas ioinformáticas (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV), desenharam-se primers específicos e realizaram-se PCR específicos para os genes envolvidos. Através da utilização de ferramentas de bioinformática, foi possível identificar várias proteínas que pertencem à família das carboxipeptidases e que podem eventualmente participar no processo da degradação da OTA, tais como D-Ala-D-Ala carboxipeptidase serínica e carboxipeptidase membranar. Estas BAL podem desempenhar um papel importante na destoxificação da OTA, sendo as carboxipeptidases uma das enzimas envolvidas na sua biodegradação.
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of \ATPS\ utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215 M NaCl (all in 0.01 M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in \ATPS\ may be observed for biological properties of compounds as well.
Resumo:
Dissertação de mestrado em Bioengenharia