10 resultados para time monitoring
em Universidade do Minho
Resumo:
First published online: December 16, 2014.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
The observational method in tunnel engineering allows the evaluation in real time of the actual conditions of the ground and to take measures if its behavior deviates considerably from predictions. However, it lacks a consistent and structured methodology to use the monitoring data to adapt the support system in real time. The definition of limit criteria above which adaptation is required are not defined and complex inverse analysis procedures (Rechea et al. 2008, Levasseur et al. 2010, Zentar et al. 2001, Lecampion et al. 2002, Finno and Calvello 2005, Goh 1999, Cui and Pan 2012, Deng et al. 2010, Mathew and Lehane 2013, Sharifzadeh et al. 2012, 2013) may be needed to consistently analyze the problem. In this paper a methodology for the real time adaptation of the support systems during tunneling is presented. In a first step limit criteria for displacements and stresses are proposed. The methodology uses graphics that are constructed during the project stage based on parametric calculations to assist in the process and when these graphics are not available, since it is not possible to predict every possible scenario, inverse analysis calculations are carried out. The methodology is applied to the “Bois de Peu” tunnel which is composed by two tubes with over 500 m long. High uncertainty levels existed concerning the heterogeneity of the soil and consequently in the geomechanical design parameters. The methodology was applied in four sections and the results focus on two of them. It is shown that the methodology has potential to be applied in real cases contributing for a consistent approach of a real time adaptation of the support system and highlight the importance of the existence of good quality and specific monitoring data to improve the inverse analysis procedure.
Resumo:
Temporal logics targeting real-time systems are traditionally undecidable. Based on a restricted fragment of MTL-R, we propose a new approach for the runtime verification of hard real-time systems. The novelty of our technique is that it is based on incremental evaluation, allowing us to e↵ectively treat duration properties (which play a crucial role in real-time systems). We describe the two levels of operation of our approach: offline simplification by quantifier removal techniques; and online evaluation of a three-valued interpretation for formulas of our fragment. Our experiments show the applicability of this mechanism as well as the validity of the provided complexity results.
Resumo:
BACKGROUND: The Cervical Cancer Database of the Brazilian National Health Service (SISCOLO) contains information regarding all cervical cytological tests and, if properly explored, can be used as a tool for monitoring and managing the cervical cancer screening program. The aim of this study was to perform a historical analysis of the cervical cancer screening program in Brazil from 2006 to 2013. MATERIAL AND METHODS: The data necessary to calculate quality indicators were obtained from the SISCOLO, a Brazilian health system tool. Joinpoint analysis was used to calculate the annual percentage change. RESULTS: We observed important trends showing decreased rates of low-grade squamous intraepithelial lesions (LSIL) and high-grade squamous intraepithelial lesions (HSIL) and an increased rate of rejected exams from 2009 to 2013. The index of positivity was maintained at levels below those indicated by international standards; very low frequencies of unsatisfactory cases were observed over the study period, which partially contradicts the low rate of positive cases. The number of positive cytological diagnoses was below that expected, considering that developed countries with low frequencies of cervical cancer detect more lesions annually. CONCLUSIONS: The evolution of indicators from 2006 to 2013 suggests that actions must be taken to improve the effectiveness of cervical cancer control in Brazil.
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.