3 resultados para tangent bundles
em Universidade do Minho
Resumo:
Cultural heritage has arousing the interest of the general public (e.g. tourists), resulting in the increasing number of visitations to archaeological sites. However, many buildings and monuments are severely damaged or completely destroyed, which doesn’t allow to get a full experience of “travelling in time”. Over the years, several Augmented Reality (AR) approaches were proposed to overcome these issues by providing three-dimensional visualization of reconstructed ancient structures in situ. However, most of these systems were made available through heavy and expensive technological bundles. Alternatively, MixAR intends to be a lightweight and cost-effective Mixed Reality system which aims to provide the visualization of virtual ancient buildings reconstructions in situ, properly superimposed and aligned with real-world ruins. This paper proposes and compares different AR mobile units setups to be used in the MixAR system, with low-cost and lightweight requirements in mind, providing different levels of immersion. It was propounded four different mobile units, based on: a laptop computer, a single-board computer (SBC), a tablet and a smartphone, which underwent a set of tests to evaluate their performances. The results show that mobile units based on laptop computer and SBC reached a good overall performance while mobile units based on tablet and smartphone did not meet such a satisfactory result even though they are acceptable for the intended use.
Resumo:
Ageing and skin exposure to UV radiation induces production and activation of matrix metalloproteinases (MMPs) and human neutrophil elastase (HNE). These enzymes are known to break down the extracellular matrix (ECM) which leads to wrinkle formation. Here, we demonstrated the potential of a solid-in-oil nanodispersion containing a competitive inhibitor peptide of HNE mixed with hyaluronic acid (HA), displaying 158 nm of mean diameter, to protect the skin against the ageing effects. Western blot analysis demonstrated that activation of MMP-1 in fibroblasts by HNE treatment is inhibited by the solid-in-oil nanodispersion containing the peptide and HA. The results clearly demonstrate that solid-in-oil nanodispersion containing the HNE inhibitor peptide is a promising strategy for anti-ageing effects. This effect can be seen particularly by ECM regulation by affecting fibroblasts. The formulation also enhances the formation of thicker bundles of actin filaments.
Resumo:
We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.