5 resultados para structured wall pipe
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Projeto de investigação integrado de International Master in Sustainable Built Environment
Resumo:
Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.
Resumo:
[Exert] Since the discovery that polyacetylene could be doped to the metallic state more than 3 decades ago, an ever-growing body of a multidisciplinary approach to material design, synthesis, and system integration has been evidenced. The present chapter will primarily review the emerging field of intrinsically conducting polymer and conductive polymer blends, with polyaniline and polypyrrole as the major representatives of conducting polymers. This survey will also address some of the potential areas for applications of such conductive polymer blends. Also, current results concerning the chemical polymerization of conducting polymers on bacterial nanocellulose (BNC) will be presented, including brief remarks on the rationale for the use of conductive BNC blends. This will be followed by a discussion on their properties and potential applications (...).
Resumo:
This paper reports on a new façade system that uses passive solutions in the search for energy efficiency. The differentials are the versatility and flexibility of the modules, which are important advantages of the system. The thermal performance of Trombe walls and glazings and the daylighting performance of glazing were the key aspects analyzed in the results. Computational simulations were accomplished for the thermal performance of different arrangements of the modules with DesignBuilder software. The glazing daylighting performance was studied by means of Ecotect and Desktop Radiance programs and compared with the transmittance curves of glazings. Occupancy profile and internal gains were fixed according to the Portuguese reality for both studies. The main characteristics considered in this research were the use of two double glazings, four different climates in Portugal and one and two Trombe walls in the façade. The results show an important reduction in the energy consumption with the use of Trombe walls and double self-cleaning glazing in the façade, which also presented better daylighting performance.