4 resultados para serial hiltzailea
em Universidade do Minho
Resumo:
In the present work the benefits of using graphics processing units (GPU) to aid the design of complex geometry profile extrusion dies, are studied. For that purpose, a3Dfinite volume based code that employs unstructured meshes to solve and couple the continuity, momentum and energy conservation equations governing the fluid flow, together with aconstitutive equation, was used. To evaluate the possibility of reducing the calculation time spent on the numerical calculations, the numerical code was parallelized in the GPU, using asimple programing approach without complex memory manipulations. For verificationpurposes, simulations were performed for three benchmark problems: Poiseuille flow, lid-driven cavity flow and flow around acylinder. Subsequently, the code was used on the design of two real life extrusion dies for the production of a medical catheter and a wood plastic composite decking profile. To evaluate the benefits, the results obtained with the GPU parallelized code were compared, in terms of speedup, with a serial implementation of the same code, that traditionally runs on the central processing unit (CPU). The results obtained show that, even with the simple parallelization approach employed, it was possible to obtain a significant reduction of the computation times.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Relatório de estágio de mestrado em História