4 resultados para sensori, sci, angoli articolari, cinematica
em Universidade do Minho
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
Purpose. To analyze dry eye disease (DED) tests and their consistency in similar nonsymptomatic population samples living in two geographic locations with different climates (Continental vs. Atlantic). Methods. This is a pilot study including 14 nonsymptomatic residents from Valladolid (Continental climate, Spain) and 14 sex-matched and similarly aged residents from Braga (Atlantic climate, Portugal); they were assessed during the same season (spring) of two consecutive years. Phenol red thread test, conjunctival hyperemia, fluorescein tear breakup time, corneal and conjunctival staining, and Schirmer test were evaluated on three different consecutive visits. Reliability was assessed using the intraclass correlation coefficient and weighted kappa (J) coefficient for quantitative and ordinal variables, respectively. Results. Fourteen subjects were recruited in each city with a mean (TSD) age of 63.0 (T1.7) and 59.1 (T0.9) years (p = 0.08) in Valladolid and Braga, respectively. Intraclass correlation coefficient and J values of the tests performed were below 0.69 and 0.61, respectively, for both samples, thus showing moderate to poor reliability. Subsequently, comparisons were made between the results corresponding to the middle and higher outdoor relative humidity (RH) visit in each location as there were no differences in mean temperature (p Q 0.75) despite RH values significantly differing (p e 0.005). Significant (p e 0.05) differences were observed between Valladolid and Braga samples on tear breakup time (middle RH visit, 2.76 T 0.60 vs. 5.26 T 0.64 seconds; higher RH visit, 2.61 T 0.32 vs. 5.78 T 0.88 seconds) and corneal (middle RH, 0.64 T 0.17 vs. 0.14 T 0.10; higher RH, 0.60 T 0.22 vs. 0.0 T 0.0) and conjunctival staining (middle RH, 0.61 T 0.17 vs. 0.14 T 0.08; higher RH, 0.57 T 0.15 vs. 0.18 T 0.09). Conclusions. This pilot study provides initial evidence to support that DED test outcomes assessing the ocular surface integrity and tear stability are climate dependent. Future large-sample studies should support these outcomes also in DED patients. This knowledge is fundamental for multicenter clinical trials. Lack of consistency in diagnostic clinical tests for DED was also corroborated. (Optom Vis Sci 2015;92:e284Ye289)
Resumo:
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated tau and insoluble tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered tau pathology.
Resumo:
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.