44 resultados para robust transitivity
em Universidade do Minho
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Avaliação do desempenho de fundos de investimento de obrigações: evidência para o mercado Brasileiro
Resumo:
Dissertação de mestrado em Finanças
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
The MAP-i doctoral program of the Universities of Minho, Aveiro and Porto
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
The unravelling of hair pigmentation genetics and robust delivery systems to the hair follicle (HF) will allow the development of a new class of colouring products. The challenge will be changing hair colour from inside out by safely regulating the activity of target genes through the specific delivery of synthetic/natural compounds, proteins, genes, or small RNAs.
A delinquência juvenil em Cabo Verde: da caracterização do fenómeno à contextualização sociocultural
Resumo:
Tese de Doutoramento em Psicologia Aplicada.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.