35 resultados para regulatory volume increase
em Universidade do Minho
Resumo:
Dissertação de mestrado em Economia Industrial e da Empresa
Resumo:
Nowadays, road accidents are a major public health problem, which increase is forecasted if road safety is not treated properly, dying about 1.2 million people every year around the globe. In 2012, Portugal recorded 573 fatalities in road accidents, on site, revealing the largest decreasing of the European Union for 2011, along with Denmark. Beyond the impact caused by fatalities, it was calculated that the economic and social costs of road accidents weighted about 1.17% of the Portuguese gross domestic product in 2010. Visual Analytics allows the combination of data analysis techniques with interactive visualizations, which facilitates the process of knowledge discovery in sets of large and complex data, while the Geovisual Analytics facilitates the exploration of space-time data through maps with different variables and parameters that are under analysis. In Portugal, the identification of road accident accumulation zones, in this work named black spots, has been restricted to annual fixed windows. In this work, it is presented a dynamic approach based on Visual Analytics techniques that is able to identify the displacement of black spots on sliding windows of 12 months. Moreover, with the use of different parameterizations in the formula usually used to detect black spots, it is possible to identify zones that are almost becoming black spots. Through the proposed visualizations, the study and identification of countermeasures to this social and economic problem can gain new grounds and thus the decision- making process is supported and improved.
Resumo:
The incorporation of fly ash (FA) in cementitious matrices have been frequently used in order to make the matrix more resistant to the action of chlorides. On the other hand, it is known that Ca (OH)2 existing in the matrix is partially consumed by the pozzolanic reactions, which facilitates the advancement of carbonation. Given that the combined action between carbonation and chloride penetration is a fact little known, we speculate about the behaviour of the matrix in this context. This study investigates the influence of the presence of chlorides on the carbonation in mortars with FA. Samples with 0% and 40% replacement of cement CEM I 42.5 R for FA were molded with water/binder 0.56 and 0.52 respectively. After 90 days of curing the specimens were subjected to cycles of immersion/drying for 56 days. Half of the samples was subjected to the following cycle: two days in a solution containing NaCl (concentration equal to 3.5 %); 12 days in the carbonation chamber (4% of CO2). The other half was: two days in water; 12 days in the carbonation chamber. Then, the development of carbonation was evaluated. The results indicate that the presence of chlorides influences the carbonation. The specimens submitted to the exclusive action of CO2 showed a greater depth of carbonation compared to that presented by the specimens subjected to combined action. This may be related to changes in properties of the matrix which may lead to further refinement of the pores and related to the presence of the salt that can lead to partial filling of the pores and the increase in moisture content.
Resumo:
The eco-efficient, self-compacting concrete (SCC) production, containing low levels of cement in its formulation, shall contribute for the constructions' sustainability due to the decrease in Portland cement use, to the use of industrial residue, for beyond the minimization of the energy needed for its placement and compaction. In this context, the present paper intends to assess the viability of SCC production with low cement levels by determining the fresh and hardened properties of concrete containing high levels of fly ash (FA) and also metakaolin (MK). Hence, 6 different concrete formulations were produced and tested: two reference concretes made with 300 and 500 kg/m3 of cement; the others were produced in order to evaluate the effects of high replacement levels of cement. Cement replacement by FA of 60% and by 50% of FA plus 20% of MK were tested and the addition of hydrated lime in these two types of concrete were also studied. To evaluate the self-compacting ability slump flow test, T500, J-ring, V-funnel and L-box were performed. In the hardened state the compressive strength at 3, 7, 14, 21, 28 and 90 days of age was determined. The results showed that it is possible to produce low cement content SCC by replacing high levels of cement by mineral additions, meeting the rheological requirements for self-compacting, with moderate resistances from 25 to 30 MPa after 28 days.
Resumo:
This study aimed to develop appropriate changes in a pair of shoes in order to improve the gait of an individual selected for this case study. This analysis took into account ergonomic aspects, namely those relating to the individual’s anthropometrics. Gait analysis was done with the adapted footwear both before and after intervention.A conventional X-ray was performed, which revealed a 29-mm left lower limb shortening and possible foot adduction. The anthropometric assessment confirmed a 27-mm asymmetry between the left knee and foot.Corrective changes were implemented in the left boot, with a 20-mm increase in the plantar aspect and approximately 30-mm in the calcaneus area.The pressure-mapping system WalkinSense was used for the kinetic gait analysis. Results showed some improvement in plantar pressure distribution after corrective changes in footwear. Peak pressure in the left foot decreased from 2.8kg/cm2 to 1.6kg/cm2. The second peak also showed a marked decrease. The right foot presented with a reduction in peak plantar pressure from 2.7kg/cm2 to 2.3kg/cm2.After identifying asymmetries, the associated pathologies and modifyingthe footwear, a kinetic analysis of gait before and after altering the footwear was undertaken, which showed improvements in the gait. According to the obtained results, it was possible to demonstrate that the initially proposed objectives were achieved, i.e., the changes in footwear resulted in an improvement of the analyzed individual.
Resumo:
This work presents a numerical study of the 4:1 planar contraction flow of a viscoelastic fluid described by the simplified Phan-Thien–Tanner model under the influence of slip boundary conditions at the channel walls. The linear Navier slip law was considered with the dimensionless slip coefficient varying in the range ½0; 4500. The simulations were carried out for a small constant Reynolds number of 0.04 and Deborah numbers (De) varying between 0 and 5. Convergence could not be achieved for higher values of the Deborah number, especially for large values of the slip coefficient, due to the large stress gradients near the singularity of the reentrant corner. Increasing the slip coefficient leads to the formation of two vortices, a corner and a lip vortex. The lip vortex grows with increasing slip until it absorbs the corner vortex, creating a single large vortex that continues to increase in size and intensity. In the range De = 3–5 no lip vortex was formed. The flow is characterized in detail for De ¼ 1 as function of the slip coefficient, while for the remaining De only the main features are shown for specific values of the slip coefficient.
Resumo:
PhD Thesis in Bioengineering
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.
Connecting free volume with shape memory properties in noncytotoxic gamma-irradiated polycyclooctene
Resumo:
The free volume holes of a shape memory polymer have been analysed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyse shape recovery and free volume hole sizes in gamma irradiated polycyclooctene (PCO) samples, as a non-cytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open t possibilities for the design and control of the macroscopic response.
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
During the recent years followed by the Global Financial Crisis (GFC), most of business and industries around the globe have been hardly hit to the limit that it still struggling to survive, suffering from the crisis financial consequences. For instance, in the construction industry; many construction projects have been suspended or totally cancelled. Nevertheless, among this dilemma, a call has been raised to use the sustainable practices to mitigate the effects of the GFC on construction industry. For the first look, it seems that there is contradiction since the sustainable solutions are often associated with an increase in the initial cost, undoubtedly, the sustainable practices have many advantages in both economic and environment aspects, however, the question which needs to be addressed here is, to what extent using such sustainable practices can mitigate the negative effects of the economic downturn on construction industry. Therefore, it is a challenging argument for using such sustainable construction from its economic perspective, however, this paper is aiming to present the economical benefits of sustainable practices in construction industry, and trying to clear the doubt of the high initial costs of the sustainable construction through studying the life cycle benefit of green building.