2 resultados para province of Quebec

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing data supports Portugal as the Western Europe country with highest HIV-1 subtype diversity. However, detailed phylogenetic studies of Portuguese HIV-1 epidemics are still scarce. Thus, our main goal was to analyze the phylodynamics of a local HIV-1 infection in the Portuguese region of Minho. Molecular epidemiological analysis was applied to data from 289 HIV-1 infected individuals followed in the reference Hospital of the province of Minho, Portugal, in which isolated viruses had been sequenced between 2000 and 2012. Viruses of the G (29.1%) and B (27.0%) subtypes were the most frequent, followed by recombinant forms (17.6%), C (14.5%), F1 (7.3%) and A1 (4.2%) subtypes. Multinomial logistic regression revealed that the odds of being infected with A1 and F1 subtype increased over the years when compared with B, G, C or recombinant viruses. As expected, polyphyletic patterns suggesting multiple and old introductions of subtypes B and G were found. However, transmission clusters of non-B and -G viruses among native individuals were also found with the dates of the most recent common ancestor estimated to the early 2000s. Our study supports that the HIV-1 subtype diversity in the Portuguese region of Minho is high and has been increasing in a manner that is apparently driven by factors other than immigration and international travel. Infections with A1 and F1 viruses in the region of Minho are becoming established and were mainly found in sexually transmitted clusters, reinforcing the need for more efficacious control measures targeting this infection route.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.