45 resultados para proper motions
em Universidade do Minho
Resumo:
Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischemia, inflammation, and infection costing $7.5 billion/year in the US alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization, and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA microparticles that provides a sustained release of bioactive insulin for >20days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring, healing. Using a heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04mg insulin/cm2, every three days for 9 days, have faster closure, faster rate of disintegration of dead tissue, and decreased oxidative stress.In addition, in insulin-treated wounds the pattern of neutrophil inflammatory response suggests faster clearing of the burn dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibers organized more like a basket weave (normal skin) than aligned and crosslinked (scar tissue). In summary , application of ASD-containing insulin-loaded PLGA particles on burns every three days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.
Resumo:
Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive. We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3 1. L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2. A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3. Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)
Resumo:
The experimental evaluation of viscoelastic properties of concrete is traditionally made upon creep tests that consist in the application of sustained loads either in compression or in tension. This kind of testing demands for specially devised rigs and requires careful monitoring of the evolution of strains, whereas assuring proper load constancy. The characterization of creep behaviour at early ages offers additional challenges due to the strong variations in viscoelastic behaviour of concrete during such stages, demanding for several testing ages to be assessed. The present research work aims to assist in reducing efforts for continuous assessment of viscoelastic properties of concrete at early ages, by application of a dynamic testing technique inspired in methodologies used in polymer science: Dynamic Mechanical Analyses. This paper briefly explains the principles of the proposed methodology and exhibits the first results obtained in a pilot application. The results are promising enough to encourage further developments.
Resumo:
Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.
Resumo:
The present study reviews the scientific literature that describes the criteria equations for defining the mismatch between students and school furniture. This mismatch may negatively affect students' performance and comfort. Seventeen studies met the criteria of this review and twenty-one equations to test six furniture dimensions were identified. There was substantial mismatch between the relative heights of chairs and tables. Some systematic errors have been found during the application of the different equations, such as the assumption that students are sitting on chairs with a proper seat height. Only one study considered the cumulative fit. Finally, some equations are based on contradictory criteria and need to develop and evaluate new equations for these cases. Relevance to industry: Ultimately, the present work is a contribution toward improving the evaluation of school furniture and could be used to design ergonomic-oriented classroom furniture.
Resumo:
Tese de Doutoramento em Geografia - Geografia Humana
Resumo:
Childhood is a central period for career and social-emotional development. However, the literature covering childhood career development and the role of emotions in careers is scarce. In this article, we advocate for the consideration of emotions in childhood career development. Emotional aspects of children’s career exploration, key-figures and interests, as well as of childhood antecedents of lifelong career processes are presented. Relations between childhood emotion, behavior, functioning and learning are also presented. Conclusions center on a call for focused study of the role of emotion in childhood career development and how such an agenda will advance the literature.
Resumo:
Polyurethane thermoplastic elastomer (TPU) nanocomposites were prepared by the incorporation of 1 wt% of high-structured carbon black (HSCB), carbon nanofibers (CNF), nanosilica (NS) and nanoclays (NC), following a proper high-shear blending procedure. The TPU nanofilled mechanical properties and morphology was assessed. The nanofillers interact mainly with the TPU hard segments (HS) domains, determining their glass transition temperature, and increasing their melting temperature and enthalpy. A significant improvement upon the modulus, sustained stress levels and deformation capabilities is evidenced. The relationships between the morphology and the nanofilled TPU properties are established, evidencing the role of HS domains on the mechanical response, regardless the nanofiller type.
Resumo:
Composite films with filler microparticles of Barium ferrite dispersed within P(VDF-TrFE) as polymeric matrix have been prepared by solvent evaporation. The lowest BaFO content of 1% wt acts as a small defect within the polymeric matrix, reducing the values of the dielectric and mechanical properties of the pure P(VDF-TrFE). For filler contents up to a 20%, the BaFO filler reinforces the matrix and measured properties increase their values. This trend is not followed by the electrical conductivity. We extended the study to fibers composed by BaFe12O19 microparticles in a PVDF matrix. Due to the big size of BaFO particles (1 micron in diameter), proper fabrication of the fiber shaped composites has not been achieved. We found that true BaFO content are always lower than nominal ones. Results are discussed in terms of the influence of size and morphology of the BaFO particles on the initial properties of the polymeric matrix.
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
Tese de Doutoramento em Ciências da Administração
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. This analysis uses the full dataset recorded in 2012: 20.3 fb−1 of proton--proton collision data at s√=8 TeV. The search employs techniques for reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal events require at least two reconstructed vertices. No significant excess of events over the expected background is found, and limits as a function of proper lifetime are reported for the decay of the Higgs boson and other scalar bosons to long-lived particles and for Hidden Valley Z′ and Stealth SUSY benchmark models. The first search results for displaced decays in Z′ and Stealth SUSY models are presented. The upper bounds of the excluded proper lifetimes are the most stringent to date.
Resumo:
The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb−1 of data collected in proton--proton collisions at s√ = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.