32 resultados para probabilistic topic models
em Universidade do Minho
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
The assessment of existing timber structures is often limited to information obtained from non or semi destructive testing, as mechanical testing is in many cases not possible due to its destructive nature. Therefore, the available data provides only an indirect measurement of the reference mechanical properties of timber elements, often obtained through empirical based correlations. Moreover, the data must result from the combination of different tests, as to provide a reliable source of information for a structural analysis. Even if general guidelines are available for each typology of testing, there is still a need for a global methodology allowing to combine information from different sources and infer upon that information in a decision process. In this scope, the present work presents the implementation of a probabilistic based framework for safety assessment of existing timber elements. This methodology combines information gathered in different scales and follows a probabilistic framework allowing for the structural assessment of existing timber elements with possibility of inference and updating of its mechanical properties, through Bayesian methods. The probabilistic based framework is based in four main steps: (i) scale of information; (ii) measurement data; (iii) probability assignment; and (iv) structural analysis. In this work, the proposed methodology is implemented in a case study. Data was obtained through a multi-scale experimental campaign made to old chestnut timber beams accounting correlations of non and semi-destructive tests with mechanical properties. Finally, different inference scenarios are discussed aiming at the characterization of the safety level of the elements.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Risk acceptance in the furniture sector: Analysis of acceptance level and relevant influence factors
Resumo:
Risk acceptance has been broadly discussed in relation to hazardous risk activities and/or technologies. A better understanding of risk acceptance in occupational settings is also important; however, studies on this topic are scarce. It seems important to understand the level of risk that stakeholders consider sufficiently low, how stakeholders form their opinion about risk, and why they adopt a certain attitude toward risk. Accordingly, the aim of this study is to examine risk acceptance in regard to occupational accidents in furniture industries. The safety climate analysis was conducted through the application of the Safety Climate in Wood Industries questionnaire. Judgments about risk acceptance, trust, risk perception, benefit perception, emotions, and moral values were measured. Several models were tested to explain occupational risk acceptance. The results showed that the level of risk acceptance decreased as the risk level increased. High-risk and death scenarios were assessed as unacceptable. Risk perception, emotions, and trust had an important influence on risk acceptance. Safety climate was correlated with risk acceptance and other variables that influence risk acceptance. These results are important for the risk assessment process in terms of defining risk acceptance criteria and strategies to reduce risks.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
Developing and implementing data-oriented workflows for data migration processes are complex tasks involving several problems related to the integration of data coming from different schemas. Usually, they involve very specific requirements - every process is almost unique. Having a way to abstract their representation will help us to better understand and validate them with business users, which is a crucial step for requirements validation. In this demo we present an approach that provides a way to enrich incrementally conceptual models in order to support an automatic way for producing their correspondent physical implementation. In this demo we will show how B2K (Business to Kettle) system works transforming BPMN 2.0 conceptual models into Kettle data-integration executable processes, approaching the most relevant aspects related to model design and enrichment, model to system transformation, and system execution.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
This review deals with the recent developments and present status of the theoretical models for the simulation of the performance of lithium ion batteries. Preceded by a description of the main materials used for each of the components of a battery -anode, cathode and separator- and how material characteristics affect battery performance, a description of the main theoretical models describing the operation and performance of a battery are presented. The influence of the most relevant parameters of the models, such as boundary conditions, geometry and material characteristics are discussed. Finally, suggestions for future work are proposed.
Resumo:
To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
Relatório de estágio de mestrado em Contabilidade
Resumo:
Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background, we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression, in three of the most widely used mouse strains: Balb/c, C57BL/6, and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in women and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor (Bdnf) expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos) predict 39.5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression. Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by revealing the predictive value of hippocampal iNos expression levels in depressive-like behavior, irrespectively of the mouse strain.
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.