2 resultados para population studies
em Universidade do Minho
Resumo:
Changes in population age structure are a major concern and represent a priority in the agendas and policies of the developed world, which are demanding for renewed models of social and healthcare as well as assistance services to the elderly population. Studies indicate that as far as possible these types of services should desirably be provided at the user’s home, and that ICT-based solutions can have tremendous impact on the delivery of new services. This paper highlight and discusses some of the main results of a project undertaken in a Portuguese Municipality that demonstrates the potential contribution of an e-Marketplace of care and assistance services to the well-being of elderly people. Studies undertaken allowed identifying the main services that should be provided by such e-Marketplace (termed GuiMarket), the relevance that the population grant to this platform and, conversely, the fact that the Digital Divide phenomena influences the potential utilization of this project (and alike projects). The findings support that there is a strong relation between age and qualifications, and between access to ICT and the intended use of GuiMarket.
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.