3 resultados para phylogenetic tree
em Universidade do Minho
Resumo:
A high-resolution mtDNA phylogenetic tree allowed us to look backward in time to investigate purifying selection. Purifying selection was very strong in the last 2,500 years, continuously eliminating pathogenic mutations back until the end of the Younger Dryas (∼11,000 years ago), when a large population expansion likely relaxed selection pressure. This was preceded by a phase of stable selection until another relaxation occurred in the out-of-Africa migration. Demography and selection are closely related: expansions led to relaxation of selection and higher pathogenicity mutations significantly decreased the growth of descendants. The only detectible positive selection was the recurrence of highly pathogenic nonsynonymous mutations (m.3394T>C-m.3397A>G-m.3398T>C) at interior branches of the tree, preventing the formation of a dinucleotide STR (TATATA) in the MT-ND1 gene. At the most recent time scale in 124 mother-children transmissions, purifying selection was detectable through the loss of mtDNA variants with high predicted pathogenicity. A few haplogroup-defining sites were also heteroplasmic, agreeing with a significant propensity in 349 positions in the phylogenetic tree to revert back to the ancestral variant. This nonrandom mutation property explains the observation of heteroplasmic mutations at some haplogroup-defining sites in sequencing datasets, which may not indicate poor quality as has been claimed.
Resumo:
Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.
Resumo:
The aim of this study was to determine if mycobacterial lineages affect infection risk, clustering, and disease progression among Mycobacterium tuberculosis cases in The Netherlands. Multivariate negative binomial regression models adjusted for patient-related factors and stratified by patient ethnicity were used to determine the association between phylogenetic lineages and infectivity (mean number of positive contacts around each patient) and clustering (as defined by number of secondary cases within 2 years after diagnosis of an index case sharing the same fingerprint) indices. An estimate of progression to disease by each risk factor was calculated as a bootstrapped risk ratio of the clustering index by the infectivity index. Compared to the Euro-American reference, Mycobacterium africanum showed significantly lower infectivity and clustering indices in the foreign-born population, while Mycobacterium bovis showed significantly lower infectivity and clustering indices in the native population. Significantly lower infectivity was also observed for the East African Indian lineage in the foreign-born population. Smear positivity was a significant risk factor for increased infectivity and increased clustering. Estimates of progression to disease were significantly associated with age, sputum-smear status, and behavioral risk factors, such as alcohol and intravenous drug abuse, but not with phylogenetic lineages. In conclusion, we found evidence of a bacteriological factor influencing indicators of a strain's transmissibility, namely, a decreased ability to infect and a lower clustering index in ancient phylogenetic lineages compared to their modern counterparts. Confirmation of these findings via follow-up studies using tuberculin skin test conversion data should have important implications on M. tuberculosis control efforts.