24 resultados para patient centered care model
em Universidade do Minho
Resumo:
In Intensive Medicine, the presentation of medical information is done in many ways, depending on the type of data collected and stored. The way in which the information is presented can make it difficult for intensivists to quickly understand the patient's condition. When there is the need to cross between several types of clinical data sources the situation is even worse. This research seeks to explore a new way of presenting information about patients, based on the timeframe in which events occur. By developing an interactive Patient Timeline, intensivists will have access to a new environment in real-time where they can consult the patient clinical history and the data collected until the moment. The medical history will be available from the moment in which patients is admitted in the ICU until discharge, allowing intensivist to examine data regarding vital signs, medication, exams, among others. This timeline also intends to, through the use of information and models produced by the INTCare system, combine several clinical data in order to help diagnose the future patients’ conditions. This platform will help intensivists to make more accurate decision. This paper presents the first approach of the solution designed
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)
Resumo:
The study reported here aims at contributing to a deeper understanding of the educational possibilities offered by digital manipulatives in preschool contexts. It presents a study carried with a digital manipulative to enhance the development of lexical knowledge and language awareness, which are relevant language abilities for formal literacy learning. The study took place in a Portuguese preschool, with a class of 20 five-year-olds in collaboration with the teacher. The digital manipulative supported the construction of multiple fictional worlds, motivating children's verbal interactions, and the playing of words and sound games, thus contextualizing the learning of an extensive collection of vocabulary and language awareness abilities. The degree of engagement and involvement that the manipulative provided in supporting children’s imaginative play as well as the imitation, in their own play, of the playful pedagogical interventions that the teacher had designed, shows the importance of well- designed materials that support a child-centered learning model. As such, it sustains a discussion on the potential of digital manipulatives to enhance fundamental language development in the preschool years. Further, the study highlights the importance of multidisciplinary teams in the creation of innovative pedagogical materials.
Resumo:
Between 2011 and 2012, 213 heterosexual couples undergoing fertility treatments in a Portuguese public fertility centre were systematically recruited to assess factors associated with willingness to donate embryos for research. Data were collected by questionnaire. Most couples (87.3%; 95% CI 82.1 to 91.5) were willing to donate embryos for research, citing benefits for science, health and infertile patients. Almost all couples (94.3%; 95% CI 89.8 to 96.7) reached consensus about the decision. Willingness to donate was more frequent in women younger than 36 years (adjusted OR 3.06; 95% CI 1.23 to 7.61) and who considered embryo research to be very important (adjusted OR: 6.32; 95% CI 1.85 to 21.64), and in Catholic men (adjusted OR 4.16; 95% CI 1.53 to 11.30). Those unwilling to donate reported conceptualizing embryos as children or living beings and a lack of information or fears about embryo research. Men with higher levels of trait anxiety (adjusted OR 0.90; 95% CI 0.84 to 0.96) were less frequently willing to donate. Future research on embryo disposition decision-making should include the assessment of gender differences and psychosocial factors. Ethically robust policies and accurate information about the results of human embryo research are required.
Resumo:
Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
Dissertação de mestrado em Engenharia Humana
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação