6 resultados para patch-mosaic burning
em Universidade do Minho
Resumo:
The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.
Resumo:
The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado em Genética Molecular