5 resultados para partial extraction
em Universidade do Minho
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
[Excerpt] Cupuassu (Theobroma grandiflorum), tucumã (Astrocaryum aculeatum), peach palm (Bactris gasipaes) and abricó (American Mammea L.) are exotic fruits found in the Brazilian Amazon rainforest. All of them are well known by the native populations, and for centuries the pulps have been used in the production of juices, deserts, jams, syrups, and alcoholic beverages, among others. Additionally, the fruit seeds have been used as animal feed, fertilizers or to plant new seedlings, but a great part of these seeds are usually discarded. (...)
Resumo:
[Excerpt] Isolation and purification of valuable compounds are very important processes to valorize agro-food byproducts. Currently, protein extraction and development of environmentally friendly technologies are industrially relevant topics [1]. Among the extracted proteins from byproducts proteases are a relevant group for industrial applications. These enzymes are a class of hydrolytic enzymes capable of cleaving the peptide bonds of proteins chains and are essential in physiological processes [2]. (...)
Resumo:
In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield 90.18% in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.
Resumo:
Polysaccharides and oligosaccharides can improve quality and enhance nutritional value of final food products due to their technological and nutritional features ranging from their capacity to improve texture to their effect as dietary fibers. For this reason, they are among the most studied ingredients in the food industry. The use of natural polysaccharides and oligosaccharides as food additives has been a reality since the food industry understood their potential technological and nutritional applications. Currently, the replacement of traditional ingredients and/or the synergy between traditional ingredients and polysaccharides and oligosaccharides are perceived as promising approaches by the food industry. Traditionally, polysaccharides have been used as thickening, emulsifying, and stabilizing agents, however, at this moment polysaccharides and oligosaccharides claim health and nutritional advantages, thus opening a new market of nutritional and functional foods. Indeed, their use as nutritional food ingredients enabled the food industry to develop a countless number of applications, e.g., fat replacers, prebiotics, dietary fiber, and antiulcer agents. Based on this, among the scientific community and food industry, in the last years many research studies and commercial products showed the possibility of using either new or already used sources (though with changed properties) of polysaccharides for the production of food additives with new and enhanced properties. The increasing interest in such products is clearly illustrated by the market figures and consumption trends. As an example, the sole market of hydrocolloids is estimated to reach $7 billion in 2018. Moreover, oligosaccharides can be found in more than 500 food products resulting in a significant daily consumption. A recent study from the Transparency Market Research on Prebiotic Ingredients Market reported that prebiotics' demand was worth $2.3 billion in 2012 and it is estimated to reach $4.5 billion in 2018, growing at a compound annual growth rate of 11.4% between 2012 and 2018. The entrance of this new generation of food additives in the market, often claiming health and nutritional benefits, imposes an impartial analysis by the legal authorities regarding the accomplishment of requirements that have been established for introducing novel ingredients/food, including new poly- and oligosaccharides. This chapter deals with the potential use of polysaccharides and oligosaccharides as food additives, as well as alternative sources of these compounds and their possible applications in food products. Moreover, the regulation process to introduce novel polysaccharides and oligosaccharides in the market as food additives and to assign them health claims is discussed.