6 resultados para pH and acidity

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports the first attempt of characterizing various physical, mechanical and chemical properties of Quiscal fibres, used by the native communities in Chile and investigating the influence of atmospheric dielectric barrier discharge plasma treatment on various properties such as diameter and linear density, fat, wax and impurity%, moisture regain, chemical elements and groups, thermal degradation, surface morphology, etc. According to the experimental observations, Quiscal fibre has lower tenacity than most of the technical grade natural fibres such as sisal, hemp, flax, etc., and plasma treatment at optimum dose improved its tenacity to the level of sisal fibres. Plasma treatment also reduced the amount of fat, wax and other foreign impurities present in Quiscal fibres as well as removed lignin and hemicellulose partially from the fibre structure. Plasma treatment led to functionalization of Quiscal fibre surface with chemical groups, as revealed from attenuated total reflection spectroscopy and also confirmed from the elemental analysis using energy dispersive Xray technique and pH and conductivity measurements of fibre aqueous extract. The wetting behavior of Quiscal fibre also improved considerably through plasma treatment. However, untreated and plasma treated Quiscal fibres showed similar thermal degradation behavior, except the final degradation stage, in which plasma treated fibres showed higher stability and incomplete degradation unlike the untreated fibres. The experimental results suggested that the plasma treated Quiscal fibres, like other technical grade natural fibres, can find potential application as reinforcement of composite materials for various industrial applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biofilm adhesion to metals (copper, aluminium and brass) was studied at two different velocities and pH values of 7 and 9. Both bacteria and metals showed negative surface charges at those values of pH, which tends to slow down adhesion. Film densities increased with the fluid velocity and were also affected by the pH and by the growth rate of the bacteria. Long duration tests based on heat transfer measurements were run at five different fluid velocities and at pH = 7, showing in general an asymptotic behaviour and a control of deposition by adhesion and growth phenomena.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia