12 resultados para oxide coating

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glazing is a technique used to retard fish deterioration during storage. This work focuses on the study of distinct variables (fish temperature, coating temperature, dipping time) that affect the thickness of edible coatings (water glazing and 1.5% chitosan) applied on frozen fish. Samples of frozen Atlantic salmon (Salmo salar) at -15, -20, and -25 °C were either glazed with water at 0.5, 1.5 or 2.5 °C or coated with 1.5% chitosan solution at 2.5, 5 or 8 °C, by dipping during 10 to 60 s. For both water and chitosan coatings, lowering the salmon and coating solution temperatures resulted in an increase of coating thickness. At the same conditions, higher thickness values were obtained when using chitosan (max. thickness of 1.41±0.05 mm) compared to water (max. thickness of 0.84±0.03 mm). Freezing temperature and crystallization heat were found to be lower for 1.5% chitosan solution than for water, thus favoring phase change. Salmon temperature profiles allowed determining, for different dipping conditions, whether the salmon temperature was within food safety standards to prevent the growth of pathogenic microorganisms. The concept of safe dipping time is proposed to define how long a frozen product can be dipped into a solution without the temperature raising to a point where it can constitute a hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer blends based on poly(vinylidene fluoride), PVDF and poly(ethylene oxide), PEO, with varying compositions have been prepared by solvent casting, the polymer blend films being obtained from solutions in dimethyl formamide at 70ºC. Under these conditions PVDF crystallizes from solution while PEO remains in the molten state. Then, PEO crystallizes from the melt confined by PVDF crystalls during cooling to room temperature. PVDF crystallized from DMF solutions adopt predominantly the electroactive β-phase (85%). Nevertheless when PEO is introduced in the polymer blend the β-phase content decreases slightly to 70%. The piezoelectric coefficient (d33) in pristine PVDF is -5 pC/N and decreases with increasing PEO content in the PVDF/PEO blends. Blend morphology, observed by electron and atomic force microscopy, shows the confinement of PEO between the already formed PVDF crystals. On the other hand the sample contraction when PEO is extracted from the blend with water (which is not a solvent for PVDF) allows proving the co-continuity of both phases in the blend. PEO crystallization kinetics have been characterized by DSC both in isothermal and cooling scans experiments showing important differences in crystalline fraction and crystallization rate with sample composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous polymer membranes based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared through the, from partial to total, elimination of PEO, leading to interconnected micropores in the polymer blends. Electrolyte uptake, thermal and mechanical properties depend on the amount of PEO present in the polymer blend. Further, the degree of crystallinity of PEO and the elastic modulus (E´) of the polymer blend decrease with increasing PEO removal. Electrical properties of the polymer blend membranes are influenced by the porosity and are dominated by diffusion. The temperature dependence of ionic conductivity follows the Arrhenius behavior. It is the highest for the membranes with a volume fraction of pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room temperature. Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The polymer blends with 90% PEO removal exhibit rate (124 mAhg-1 at C/5 and 47 mAhg-1 at 2C) and cycling capabilities suitable for lithium ion battery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The barrier effect and the performance of an organic–inorganic hybrid (OIH) sol–gel coating are highlydependent on the coating deposition method as well as processing conditions. In this work, studies onthe influence of experimental parameters using the dip coating method were performed. Factors suchas residence time (Rt), a curing step between each dip step and the number of layers of sol–gel OIHfilms deposited on HDGS to prevent corrosion in highly alkaline environments were studied. These OIHcoatings were obtained using a functionalized siloxane, 3-isociantepropyltriethoxysilane that reactedwith a diamino-functionalized oligopolymer (Jeffamine®D-230). The barrier efficiency of OIH coatings insimulated concrete pore solutions (SCPS) was assessed in the first moments of contact, by electrochemicalimpedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings inSCPS was monitored during eight days by macrocell current density. The morphological characterizationof the surface was performed by scanning electronic microscopy before and after exposure to SCPS.Glow discharge optical emission spectroscopy was used to obtain quantitative composition profiles toinvestigate the thickness of the OIH coatings as a function of the number of layers deposited and theinfluence of the Rt in the coating thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was carried out to evaluate the effect of chitosan-based edible coatings with Aloe vera extract on the postharvest blueberry fruit quality during storage at 5 °C. Firstly, A. vera fractions (pulp and liquid) were extracted from leaves and evaluated in terms of antifungal and antioxidant capacities. The choice of the most adequate chitosan and A. vera fraction concentrations to be incorporated in coating formulation was made based on the wettability of the corresponding coating solutions. Coatings with 0.5% (w/v) chitosan + 0.5% (w/v) glycerol + 0.1% (w/v) Tween 80 + 0.5% (v/v) A. vera liquid fraction presented the best characteristics to uniformly coat blueberry surface. Physico-chemical (i.e., titratable acidity, pH, weight loss) and microbiological analyses of coated blueberries (non-inoculated or artificially inoculated with Botrytis cinerea) were performed during 25 d. Microbiological growth and water loss levels were approximately reduced by 50% and 42%, respectively, in coated blueberries after 25 d compared to uncoated blueberries. After 15 d, weight loss values were 6.2% and 3.7% for uncoated and chitosanA. vera coated blueberries, respectively. Uncoated fruits presented mold contamination after 2 d of storage (2.0 ± 0.32 log CFU g1), whilst fruits with chitosan-based coatings with A. vera presented mold contamination only after 9 d of storage (1.3 ± 0.35 log CFU g1). Overall, coatings developed in this study extend blueberries shelf-life for about 5 d, demonstrating for the first time that the combination of chitosan and A. vera liquid fraction as edible coating materials has great potential in expanding the shelf-life of fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.